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Abstract

PRECONDITIONING STRATEGIES FOR SOLVING ELLIPTIC
DIFFERENCE EQUATIONS ON A MULTIPROCESSOR

Charles Kirkland Taft, Jr.
Captain, United States Air Force
Master of Science
Department of Computer Science
University of Illinois
157 pages

This thesis deals with choosing preconditioning strategies to
accelerate a conjugate gradient algorithm for solving elliptic
difference equations, suitable for implementation on a multiprocessor.
The hypothetical multiprocessor considered consists of p 1linearly
connected processors. A variety of popular preconditioning strategies
for sequential machines are examined. Numerical experiments are

conducted and recommendations made.
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1. Introduction

My thesis deals with solving systems of linear equations

Ax = b, (1.1)
where A 1s a sparse symmetric and positive definite matrix. Systems of
this type arise from the discretization of second order self-adjoint
elliptic partial differential equations. Many direct and iterative
numerical methods have been developed for solving this problem; see for
example [Vargb2], [Wach66], [Youn71], [HaYo81l] and [Birk81]. The advent

of multiprocessor systems brings with it the possibility of substantial

- speedup in performing these types of numerical methods. This would

allow us to examine problems that, until now, had been too large or
complex to be computationally feasible. The new multiprocessor systems
will require that new numerical methods be generated or that older

methods be modified to take full advantage of their potential.

In this paper I consider only the conjugate gradient method and
preconditioning strategies that are best suited for implementation on a
multiprocessor system. The hypothetical multiprocessor that will be

considered consists of p linearly connected processors as shown in

figure 1.1.

> 1 |- 2 '<-—--> cor Km===> | p <--J

Figure 1.1
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Each processor is assumed to be capable of performing any arithmetic
operaticn 1Iin one time step, and that it takes ¢ time steps to transfer

one floating point number from one processor to either of its neighbors.

For sequential machines, the problem of preconditioning the
conjugate gradient algorithm has been extensively studied 1in the
liturature. See for example [AxGu80], [CoGO76], [Eise81], [Gust78],
[HaYo81], [Kers78], [Mant80], [MeVo77], [Munk80], [Reid71], and

{Reid72].
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2. Model Problem

Consider the second order self-adjoint partial differential
equations of the form

- -a% a(x,y)—%] - -a%;[c(x,y)-g—;] + f(x,v)u = g(x,y) 2.1

with a(x,y) > 0, c(x,y) > 0 and f(x,y) » O; defined on the unit square,

0 < X,y < 1; and with boundary conditions of the form

aqu + ﬂ%ﬁ =y (2.2)
where %% is the derivative normal to the boundary.

Superimposing a square grid of mesh size h = 1/(m+l) and using central
difference approximations to the derivatives, the problem converts to
solving a linear system of equations of order n2. This process is fully
derived and explained in [Varg62]. Handling boundary conditions of the

form (2.2) where 8 # 0 is discussed in [MiGr80]}.

Under certaln boundary conditions, the resulting  coefficient

matrix A is a positive definite M-matrix [Vors8l]. An M-matrix is

defined such that given matrix A = (aij)’
D a, >0 2) ai,j <0
3) A} extsts &) a1 5 0.

In Appendix D, I will describe the nature of matrix A for each of my
test problems. The structure of matrix A i{s determined by the grid
point ordering scheme. Appendix A shows examples of the natural, point
red/black, 1line red/black and 2 line red/black ordering schemes and the

resulting structure of the matrix A for a=6.




.

<

M adighiies o b .

¥ R T

TTRTTTY

O i I
Cae . -

WS . .

3. Background

3.1. Conjugate Gradient Method

The Conjugate Gradient (CG) Method was developed by Hesteznes and

Stiefel in 1952, The 1dea behind it 1s to approximate the solution

vector x by

() , 0 . 3.,

X = x
133
where
x(o) is an arbitrary initial guess, the vectors vj

are A-conjugate (ie. ngvi =0 for j#1 ) and
(m)

the a,’s are chosen to minimize ||x - xllA

3
where ||z[lA = (z,Az)llz.

The vectors vj+1 are constructed by orthogonalizing the residual

rj =bHh ~ Ax(j) with respect to Vj’ ie. rgv1 =0 for j > i. In this way,
each iteration is attempting to minimize the components of the residual
r1 along the eigenvector corresponding to the most extreme eigenvalue.
The residual then 1lies almost entirely 1in the subspace of the
eigenvectors with the remaining less extreme eigenvalues. The iteration

proceeds as if the most extreme eigenvectors and eigenvalues were not

present [Kers78].

In the absence of round-off errors, the CG method can be considered

a direct method, 1in that it will converge to the true scluticn of a

system of order n in exactly n steps, due to the orthogonality of the




vectors Vj' In fact, if the nxn matrix A has only r distinct
elgenvalues, then the method converges in only r steps. Many times, the
relative error llx(i)- x{1/11xl| will be quite small even for 1 << n.
Unfortunately, in the presence of round-off errors, the orthogonality of

the vectors v, can break down and the guaranteed finite convergence is

i
lost. It was this breakdown that prevented the CG method from getting
much attention. It wasn’t until 1971 that interest was renewed in the
CG method. At that time, Reid [Reid71] showed that the CG algorithm 1is
very effective for handling large and sparse positive definite linear
systems as arise from our model problem. TIts cause was further helped
when Concus, Golub and 0'Leary [CoG076] showed that it could be used as
an effective tool for accelerating the convergence of various iterative

methods. They pointed out that the CG method possesses some very

attractive properties:

1) doesn’t require prior knowledge of extreme eigenvalues to

calculate optimal convergence parameters

2) takes advantage of the entire distribution of eigenvalues of
matrix A

3) is optimal in the class of all algorithms for which

D L0 Pk(K)r(O) where K =L - ¥ N, A=M - s a

regular splitting and Pk(g) is a polynomial of degree k, in
the sense that it minimizes lek+1 - x]lA.

See [CoGO76) for more details.




The rate of convergence of the CG algorithm depends heavily on the
distribution of eigenvalues of matrix A. The fewer distinct eigenvalues
or the more clustered the eigenvalues, the quicker the convergence.
Unfortunately, the matrices arising from our model problem t2nd to have
eigenvalue distributions that are widely distributed with little
clustering. As a result, the CG algorithm by itself tends to do poorly.

This situation can be improved by "preconditioning" matrix A.

3.2. Preconditioning

The idea behind preconditioning is to obtain a matrix C such that C
is positive definite and C-IA has a "better" eigenvalue distribution.
It is also important to chcose matrix C such that solving a system
Cw = q 1s as easy as posgsible. The CG algorithm is then applied to the
new preconditioned system

1

¢ lax = ¢ b,

This notation has one problem in that C_IA may no longer be symmetric.

It is better to consider the preconditioned system
(C—l/zAc-l/z)(Cl/zx) - C-1/2

alar Tyl = L7lb,

b, or

where C = LLT.

Obviously the best eigenvalue distribution for C-IA would be
achieved when C = A, then C-lA = I, This does not help us much,

however, in that solving a system Cw = q is no easier than solving the




original system. The idea then 1is to choose matrix C as close as
possible to A, such that C-IA would have a few extreme eigenvalues with
the rest clustered around unity, while still requiring Cw = q be easy to

solve,

When matrix A is an M-matrix, Meijerink and van der Vorst [MeVo77]
introduced a set of preconditioning strategies based on an incomplete
factorization of matrix A. The idea is to choose C = LU, such that
matrix C resembles matrix A, A = C - R, with L and U almost as sparse as
matrix A. The sparsity of L and U 1is controlled by forcing certain
predetermined positions within L and U to be zero. These positions are
defined by a set P of places (i,j) such that

P Pn s { (4,3) | 1#j 1<i<n, 1<j<n }

where Pn contains all pairs of indices of
of f-diagonal matrix elements.
When matrix A is symmetric, we add the restriction to the set P that 1{f
(i,3) & P then so must (j,i) € P and consider an incomplete Cholesky
factorization (LLT or LDLT ). Meijerink and van der Vorst proved that
if matrix A 1s an M-matrix, then this process 1s stable and the
resulting factorization

T

¢ = LT or oLt

{s positive definite.

Using this set P notation, we can describe most of the basic

preconditioning strategies. On the extremes, we have P = Pn and P = ¢




which result i{n diagonal scaling, C = diag(A) and preconditioning by
complete Cholesky factorization, C = A, respectively. In between we
have

P = { (1,9) | AC1,5)=0 }
which {s che preconditioning strategy used by the ICCG(0) algorithm of

Meljerink anc van der Vorst [MeVo77].

When Matrix A 1s positive definite, but not an M-matrix, non-
positive or small diagonal elements can result during the factorization
process, causing matrix C to be no longer positive definite. A naumber
of modifications have been proposed to solve this problem. KXershaw
{Kers78] recommends simply replacing the non-positive diagonal elements
by suitable positive numbers. He has found that a few diagonal elements
can become non-positive and be so replaced without distracting from the
incomplete factorization, as long as most of the pivots remain positive.
Another approach is simply to add oD to matrix A before attempting the
incomplete factorization, where D = diag(A) and a is a positive scalar.
This idea was proposed by Manteuffel [Mant80] in developing his shifted
incomplete Cholesky factorization. If a 1is large enough, then the
factorization is guaranteed to be positive definite. However, choosing
a too large results in very slow convergence of the resulting conjugate
gradient algorithm. Unfortunately, the only way to determine a 'good"
value of a for a given problem is through trial and error. For the test
problems considered by Manteuffel, good results were achieved for a of

0(107%y,
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A number of variations on the 1incomplete factorization 1dea of
Meijerink and van der Vorst have been proposed. Gustafsson [Gust78]
introduced the concept of the modified incomplete factorization. Here
the elements created during the incomplete factorization that correspond
to entries in the set P are added to the diagonal elements of matrix C
prior to being discarded. The process 1s known as diagonal
modification. The MICCG(0) algorithm results when adding diagonal
modification to the ICCG(0N) algorithm. Gustafsson reports that a faster

asymptotic rate of convergence can be achieved.

Another variation has been proposed by Munksgaard [Munk80]. Here,
instead of dropping a predetermined set of elements P during the
factorization, he proposes developing criteria for dropping only the
“smaller" fill-ins while retaining the "larger" ones. The philosophy
here i{s that the number of iterations required to reach a sclution is
more sensitive to the size of the elements dropped than to the number
dropped. He suggests dropping fill-in elements if thelr numeric value

relative to the diagonal elements of their row and column is less than a
h (k+1) i

relative drop tolerance. 1In the Kkt pivot step we drop 1i 3 f
(k+1) (k) (k) 1/2
ll1j { < c(dii djj ) A

The amount of fill-in is determined by the size of ¢. If ¢ is close to
zero, we obtain almost a complete factorization, while ¢ = ! produces a
factorization where no fill-ins are added and L has the same sparsity

pattern as matrix A.
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3.3. Preconditioned Conjugate Gradient Method

Given a preconditioning matrix C and an initial guess Xy the
standard preconditioned conjugate gradient (PCG) method can be described
in the following algorithmic format:

Algorithm 3.1
a) Initial step

1) r, = b~ Ax

0 0
-1
2) zy = o] Ty
3) Py = %

b) For k = 0, 1, ee.
D o= (rk,zk)/(pk,Apk)
2) Ky T X YRy

3 Ty T Ty T gAR

4) - clr

21+l K+l

R Tt TR

) Pryp T 2y * BiPye

A commonly used stopping criterion for this algorithm 1{is to calculate

/2

N il = (tk,rk)1 each iteration and stop when Tl < g, where ¢




11
is a user specified parameter.

One choice for the initial iterate X, is a random vector. A more
creative approach 1is to choose X5 = C-lb. This uses the fact that if
matrix C is close to matrix A, then X = C—lb will be a reason~bly
accurate estimate for x = Aflb. Starting with a more accurate estimate
for x will hnopefully reduce the number of iterations required to

generate an answer of desired accuracy.

The ICCG(0) and MICCG(0) algorithms utilize incomplete LDLT

factorization of the form

c =@+ wIE + LY, (3.1)
where A =L +D + LT, L is strictly lower triangular and D and D are
positive diagonal matrices. To define D, I will use figure A5 and use

a, bi and ¢, to denote the elements of the main diagonal, upper-

diagonal and mth upper diagonal respectively, where 1 is the row index
and m is the half band width of the matrix. Then D = diag(al,---,an) is

defined for ICCG(0) as:

2 1 2 1 ;
A =ay -6 ) -l

(1 =1, 2, .., n)

and for MICCG(Q) as:

2 ~1 2 1
dj=a - bi—la;-l °1—m3;-m ST T Tiemtl

1
Ty = °r—1b1-131-1

(1 ™ l, 2’ cee, n)

— _ N o A Oy Sy # A




' e
N R M - o

et ki adc
et At el L -

3
|
|
|

12

where in both cases, elements not defined (ie. subscripts < 0) should be
replaced by =zeroes. For .those algorithms where the incomplete LDLT
factorization can be described in the form (3.1), Eisenstat [Eise8l]
proposes a different implementation of our standard PCG Algorithm 3.1.
His method reduces the number of multiply-adds required per iteration by
a factor approaching one half. This 1s done by restating the original

problem (1.1) in the form

(@ + 1) a@ + L TIE + 1)x] = (B + 1) b

or

Az = b. (3.2)
It can then be shown that applying PCG to (l.1) with preconditioning
(3.1) 1is equivalent to applying PCG to (3.2) with preconditioning
¢ ="' and setting x = (D + L)_Tﬁ. The algorithm can now be written

as:

Algorithm 3.2

a) Initial step

~ -1 A
Dty = @ +1) (b - Axo)

b) Fork =10, 1, +oe

I
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D xR O+ L)~Tﬁk

D gy =T - AR

4y, = DRy,

) B R/ (o)

) Pra ™ B * BiPy
To calculate Aﬁk, the matrix A does not have to be explicitly

calculated., The product can be computed efficiently by taking advantage

of the following identity:

A = B+ G+ + F+ 0 - @F - 016+ 07T,

This can be simplified, and results in the following two step

calculation:

- ~ T,
t (D + L) By

Ao, =t + B+ L)"(ﬁk - k¢

where K = 2D - D.

SR

This version requires 8N + NZ(A) multiply-adds, versus 6N + 2NZ(A) for
Algorithm 3.1, where N2(A) = number of non-zero elements in matrix A.
Another 3N multiply-adds can be saved by symmetrically scaling the

problem so that D =1, [Eise81].
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Rutishauser considered a version of the PCG algorithm, where Xy and

r, are calculated using a 3~-term recurrence relation. It can be

i
represented in the following algorithmic format:

Algorithm 3.3
- a) Initial step

1) choose initial guess X

% 2) x,=0
2 R
i_: 4) rosb-Axo
F

-1
) 5) zg = c ro

b) For k=0, 1, e«

1) ak = (zk’rk)/(zk’czk)

2)

ak (zk'rk)
=1/[1 -
et %y (ZaprTeoy)

m;1] (k>1)

D T T B P o (e R T Key)

4)  Tgp T Ty T G ol F o - n )
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This version 1s particularly useful when considering the conjugate
gradient method as a means of accelerating other iterative methods, as
in [CoGO76]. In general, Reid [Reid71] showed that this version

required more storage tc Iimplement than does our standard PCG

algorithm 3.1.

When matrix A possesses '"Property A", Reid {[Reid72] showed how
algorithm 3.3 could be modified to reduce the amount of work per
iteration by approximately one half. In general, the same results can

be obtained if our problem (1l.1) can be partitioned such that:
1 .| ] (3.3)

This can also be represented by the two matrix equations:

Clx1 = b1 - Fx2 (3.4)

T
sz2 = b2 - F X (3.5)
The idea behind Reid’s modification is to choose an initial guess xfo)
and then use 1t to calculate xéo) via (3.5). This then implies that

zéo) and forces «, = 1, where I assume z 1s partitioned in the same

fashion as (3.3). A simple inductive argument shows that for

j-o, 1, 2’ e

= ] and 2z

QD _ @D .
aj 1 = 22 Os
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As a result, algorithm 3.3 can be reduced to:

a)

b)

Algorithm 3.4

Initial step

1) choose initial guess x.0)

2) w =1

» K0 - gle, - %)

4) r§0) = (b, - Fxéo)) _ Clxfo)
5y 20 = cl(0

6) ol = D0

For k = 0, 1, 2, X

1)
r§2k+1) = Q- “2k+1)r§2k-1) - u’21<+11’T"‘§2k)
2 22D . Czlr§2k+1)
3) e§2k+1) - (z§2k+1)’r§2k+1))
4)
bgery = 1 - uE‘tﬂegzkﬂ)/afzk)]-x

[y ST p——y
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5)

(2k) (2k)

- (Zk"Z)
1 Wy +192k+2 %) ]

-1 -1
Ax + (1 - ka)(l - w2k+1)Ax1

(@k+2) | (2 o (2K)

6 x 1 1
7)
r§2k+2) - - w2k+2)rfzk) _ m2k+2Fz§2k+l)
8) z§2k+2) - c;1r§2k+2)
9) e§2k-1-2) - (z§2k+2),r(2k+2)) .
.0)

“oey = 11 - “;¢+2(9§2k+2)/9§2k+1))1—1

e) Once x§m) has been obtained to the desired accuracy, calculate

xém) using:

(m) ¢l

) 2

T (m)
5 = F X ).

The main advantages with this approach are that the algorithm is
working with 1/2 the number of unknowns each iteration, and that

each iteration of Algorithm 3.4 is equivalent to two iterations of

Algorithm 3.3.
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4. Investigative Process

4.1. Introduction

The investigation will be divided into three phases. In the <cirst
phase 1 examine a group of preconditioning strategies arising from the
ideas of Meijerink and van der Vorst, Gustafsson, and Munksgaard, and
determine how they compare to one another on a given set of problems.
The preconditioning strategies will be judged on how they influence the
eigenvalue distribution of our test matrices, and their effect on the
rate of convergence and amount of work required by a standard CG

algorithm to obtain a given relative error.

The second phase consists of analyzing each preconditioning
strategy and determining which ones might be easily adaptable to our
multiprocessor system. A prime consideration 1is to identify those
preconditioning strategies that minimize the total amount of work,
including the amount of interprocessor communication required to

construct the preconditioning matrix C and to solve the systems

zZ = C-lr-

From the results of the first two phases, I will narrow the list of
possible strategins to two or three prime candidates for preconditioning
on multiprocessors. The third phase then consists of analyzing the
effects of these strategies on larger and more complex test problems. I

will also examine what effect various values of ¢, the {nterprocessor
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communications cost parameter, might have on our choice of a
preconditioning strategy. The numerical experiments required during
Phase I and Phase IIT will be conducted on the CDC-Cyber 175 at the
University of Illinois, for which the arithmetic precision 1is roughly

14 decimal digits.
4.2. Software

In conducting the numerical experiments, I relied heavily on the
Harwell sparse matrix routines MA3l and EAl4A. The MA3l package served
as the basis for the incomplete factorization and conjugate gradient
routines. A complete description of these routines can be found in
[Munk80]. The program listings and on-line write-ups for the MA31

package are available in the Cyber Harwell library under the name MA3lA.

The conjugate gradient routine MA31F, contained 1in this package,

was slightly modified. Originally, it chose as its initial guess

Xy = C-lb.
In order to make it more difficult for the algorithm and to get a better
idea of how the preconditioning would effect convergence, I replaced b

by a vector with random entries between 0 and 2.

The eigenvalues of our symmetrically preconditioned mnatrices were
found using a Lanczos algorithm as implemented in the Harwell routine
EAl4A. This algorithm finds the eigenvalues without regard to their

multiplicity. A complete description of this routine can be found in
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[PaRe81]. The only modification made was to replace the Harwell random

number function FAOlAS by the CDC Fortran function RANF. The complete

program listings and write-ups for this routine should be available

shortly in the Cyber Harwell library.

This routine requires that the user supply the necessary code to
2 calculate u = u + Av each iteration, where the subroutine EAl4A supplies
the vectors u and v. Since we are working with a symmetrically

? preconditioned matrix A, we actually need to calculate

T 1

u=u+1L1 AL v (4.1)
L

' where C = LLT.

| This was done using the Harwell subroutines Ma3lG and MA3IH. The

subroutine MA31G solves the system

X = (LLT)—IY

3 using backward and forward substitution. I broke this into two separate

subroutines; MA31Gl1 to do the backward substitution, and MA31G2 to do
the forward substitution., The subroutine MA31H is wused to calculate
Ax = y. Using these three routines, we can solve equation (4.1) in the

following four steps:

NLE. R
PRI PO SR

1) solve t, = L™ 'v using MA31G2

1

L 2) calculate £, = At, using MA31H

N R
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3) solve ty = L-Tt using MA31Gl

2

4) calculate u = u + tqe

Appendix F contains source listings for the programs I created, and

those Harwell routines which I modified.

4.3. Preconditioning Strategies

The following is a list of abbreviations and descriptions of the

preconditioning strategies that I have examined.

1) DS - Diagonal Scaling

This method uses C = diag(A) as its preconditioning matrix.

2) BDS ~ Block Diagonal Scaling
Similar to diagonal scaling, this method uses C = block diag(A),

where each principle submatrix {s tri-diagonal.

3) 1C(s) - Incomplete Cholesky factorization with s diagonals added
This technique was developed by Meijerink and van der Vorst
: [MeVo77}. It is normally associated with matrices generated using
Q the natural grid point ordering scheme. The case when no fill-ins
are kept during the factorization (s=0), can easily be generalized

for matrices using other grid point ordering schemes. Here I will

limit myself to the cases s = 0, 1 and 3. They utilize set P’s of




4)

5)

6)
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the form:
PO = (1,9) 1 ACL, ) =0}
Pl = (W, $) | 11-41 # 0,1,m~1,m }

P3

{4,3 1 1i-31 # 0,1,2,m-2,m~1,m }

where m is the half band width of the outer diagonal.

MIC(s) - Modified Incomplete Cholesky factorization with s
diagonals added
Developed by Gustafsson {Gust78], it represents an extension of the

[
IC(s) algorithm to include diagonal modification.

HARWELL(c) - Harwell package MA31 with drop tolerance c

This performs the incomplete Cholesky factorization as proposed by
Munksgaard [Munk80] and implemented by the Harwell routine MA3IC.
It uses a numeric drop tolerance to control fill-ins, and 1includes
diagonal modification. It also 1incorporates minimum degree
pivoting to minimize the number of potential fill-ins generated. I
will 1limit myself to the two cases ¢=0 and c=10-2. The case ¢=0

generates a complete Cholesky factorization.

MICD(c) ~ Modified Incomplete Cholesky factorization with Drop
tolerance c
Similar to the HARWELL(c) algorithm, {in this case the minimum

degree pivoting has been eliminated.
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RBIC(s8) - Reduced Block Incomplete Cholesky factorization with s
diagonals added

This is similar to the IC(3) algorithm, except that only portions
of matrix A are used to calculate the 1incomplete Cholesky
factorization. Parcts of matrix A are ignored in order to break
matrix A into n/2 uncoupled systems of equations. The incomplete
Cholesky factorization on each system can then be performed
independently. Using the notation in Appendix B, the following is
how the matrices arising from the various grid point ordering

schemes will be partitioned:

a) Point Red/Black Ordering (Figure B4)

T T n

The elements in blocks Ei’ Ei’ Fi and Fi (1 = 1,---,(5-- 1)
will be ignored during the factorization.

b) Line Red/Black Ordering (Figure B2)

The elements in blocks E 1 = 1,--',(%-- 1)) will be

2i
ignored.

¢) 2 Line Red/Black Ordering (Figure B3)
The elements 1in blocks Eyy i = 1,---,6% - 1)) will be
ignored.

I will limit myself to the case s=0, except when working with the

2 Line Red/Black matrices, where I will also examine the case s=3,
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Each of these preconditioning strategies was not necessarily matched
with each of the grid point ordering schemes. Table 4.1 shows which

combinations were examined.

: Preconditioning Grid Point Ordering Schemes

i Strategy Natural Point R/B Line R/B  2~line R/B
DS X X

br,' ;. BDS X X X

F 1¢(0) X X X X

) Ic(l) X

] I¢(3) X
MIC(0) _, X X X X
MICD(10 ©) X X X X
MICD(0)  _, X X X X
HARWELL(10 *) X X X X
HARWELL(0) X X X X
RBIC(0) X X X
RBIC(3) X

Table 4.1
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4.4.1. Introduction

During this phase, 1 was interested in determining how the various
chosen preconditioning strategies compare to one another. I limited
myself to comparing them relative to test matrices of order 64 arising
from test problem 1 with n=8 (see appendix D). Appendix C outlines
which combinations of preconditioning strategies and grid point ordering

schemes I looked at.

A prime consideration when choosing an algorithm for this type of
problem is the amount of work required to generate an acceptable answer.
Keeping this in mind, I determined the amount of time and number of

iterations required by our PCG algorithm to produce an answer such that

-6
llrill <10

where r, = Axi - b,
This was subdivided into the time required to compute the

preconditioning matrix and that required to actually perform the PCG

iterations.

Another means of comparing preconditioning strategies is to examine
their effect on the eigenvalue distribution of the test matrices.
Ideally, the eigenvalues of the symmetrically preconditioned test
matrices should be clustered around one. In an effort to gauge this, I

used the Harwell routine EAl4A to calculate all the distinct eigenvalues

‘ - —e - I e R s -
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(ki) of the symmetrically preconditioned matrices to an accuracy of
10-4. I then calculated the range, mean and standard deviation of
(xi - 1.0). The more successful the strategy, the closer these values

will be to zero.

The conclusions reached during this phase are not necessarily
intended to hold for 1larger and mcre complex problems. A much wider
variety and size of test problems would have to have been considered.
Such a comprehensive study 1s beyond the scope of this paper. More
exhaustive studies comparing various subsets of these preconditioning
strategies with respect to sequential machines only can be found in

[MeVo77], [Gust78], and [Munk80].

4.4.2. Software

A modified version of the Harwell incomplete factorization routine
MA31C will be used to generate all the various types of factorizations
required during this phase. As written, it performed the incomplete
factorization using a numeric drop tolerance, diagonal modification, and
minimum degree pivoting. To allow the routine to handle a wider variety
of factorizations, I made the minimum degree pivoting and diagonal
modification user controlled options. I also allowed the user to choose
either a numeric drop tclerance or a user defined function FILL to

control fill-i{ns. The function FILL would decide if a =zero should be
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destroyed by considering only its coordinates, and would be similar in

nature to the set P of Meijerink and van der Vorst [MeVo77].

The routine MA31A, used to activate MA31IC, was also changed. It
had been wused to prepare the data structures required during the
incomplete factorization. 1Its duties were taken over by my routine
FACTOR. Eliminated was the automatic diagonal scaling of matrix A.
This necessitated a change to another Harwell routine MA31H, used to
calculate Ax = y. No longer does this routine assume Diag(A) = I, 1
also added to FACTOR an option to allow the user to specify which
portions of matrix A would be®’ used in calculating the incomplete
factorization. This was done using a user defined function EUSE which,
when activated, identifies which portion of matrix A is to be passed on

to subroutine MA31C.

It should be noted that, while these modifications do allow a
greater variety of preconditioning strategies to be implemented, the
process at times is far from efficient. As a result, the time required
to perform some of the incomplete factorizations will be inflated. This
is especially true for the IC(s) and RBIC(s) factorizations. Normally,
the locations of the non-zero entries in the factorization are known
beforehand, and only those values need be calculated. Here, most of the
work required to generate a potentlal fill-in is done before the program
dectdes to keep it or not. This results in more values being calculated

than need be.
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The execution time of the factorization (MA31C) and the
preconditioned conjugate gradient (MA31F) routines will be determined
using the CDC Fortran function SECOND. This function returns the
central processor time from start-of-job in seconds. The difference
between the values recorded at the start and end of a routine will be
its execution time. The values returned by function SECOND are usually

accurate to two decimal places.

The statistics on the calculated eigenvalues will be generated
using the CDC Math/Science Library routines DSCRPT and DSCRP2. The

source code for both routines is in the Cyber MSL Library.

4.4.3. Results

The results of the numerical experiments have been tabulated and
placed in Tables 4.2 - 4.9 and Graphs 4.1 - 4.5 at the end of this
section. First, I will discuss some general observations about the
data. I will then 1look at each preconditioning strategy separately,
discuss how it relates to the other preconditioning strategies, and what

effect the different grid point ordering schemes may have had upon it.

There exists a definite correlation between the number of
iterations required to solve the preconditioned system and the size of
the spectral radius, and the range and standard deviation of the

resulting eigenvalues. The smaller the spectral radius, the range, and
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the standard deviation of the eigenvalues, the fewer the number of

iterations. In most cases, the mean is also reasonably close to zero.

This supports the 1idea that the closer the eigenvalues of the

symmetrically preconditicned matrix are clustered around one, the faster

; the method will converge. Such observations, however, did not hold for
the MIC(0) preconditioning strategy. Unfortunately, I have not been
able to explain why. From this data, it is clear that the distribution,
rather than the number of distinct eigenvalues 1s the characteristic
relevant to the rate of convergence. In fact, the non-preconditioned

matrix is the matrix with the fewest distinct eigenvalues,

v As a result of the relatively small size of our test system, the
times consumed by the various preconditioned C.G. algorithms are

clustered together, If any method could be classified as the fastest,

[P 9

the Harwell(lo_z) would probably be the one. It registered a time of
0.03 second when matched with the point red/black matrix and the 2-line

red/black matrix. From this data alone however, it is dif€icult to

conclude whether the difference in times resulting from the various
-
ordering schemes 1is significant. When the Harwell(10 “) method is

compared to its sister method MICD(lO-Z), the benefits of minimum degree

[T N

pivoting (Harwell(lO-z)) are clearly evident. In each case, the

s A

Harwell(lo-z) method produced better results in every category than did

| the MICD(IO-Z) method. The MICD(lO—z) method also proved extremely

f~ sensitive to the type of ordering scheme used.
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Had the IC(n) methods been more efficiently implemented, they would
have matched the efficiency of the Harwell(lo—z) method. That aside,
they were still very competitive. The IC(0) method proved to be a
substantial improvement over the BDS method in all areas. The results
for the IC(0) method fluctuate slightly depending on the grid point
ordering scheme wused. It 1s unclear whether or not these changes are
significant. Additional tests would have to be conducted. The IC(1)
method made modest additional improvements to both the eigenvalue
distribution and rate of convergence. The timing data between the IC(0)
and IC(l) methods 1is so close, that it is impossible to tell which is
more efficient. The IC(3) method, on the other hand, while making
additional improvements on the eigenvalue distribution, did not improve
the rate of convergence enough to outweigh the increased cost of the
factorization. As a result, it 1is less desirable than the IC(Q) or
IC(1) methods. However, the results of Meijerink and van der Vorst
(MeVo77] show that for larger systems, the IC(3) method is indeed
superior. How the IC(3) method would compare to the Harwell(lo-z)

method on larger systems has, to my knowledge, not been thoroughly

explored.

-

S

AR A e s

The MIC(0) method proved extremely sensitive to the type of grid a
point ordering scheme used. It had the most trouble with the point
red/black matrix. Here the process became unstable and six diagonal
elements had to be changed, using Kershaw’s technique [Kers78], to keep

the factorization positive definite. On the other hand, with a




‘ “'..'_i.'q

. - .

—a

M 4 Pt
RS S W .

31

naturally ordered matrix, it seemed to be fairly competitive as far as
the time vrequired to obtain an answer. The eigenvalue distribution,
however, suffered as compared to the IC(n) methods. While the data here
indicates the MIC(0) method slightly inferior to the IC(0) method,
Gustafsson {[Gust78], using naturally ordered matrices, showed that for
larger systems the MIC(n) methods required fewer 1iterations than the

corresponding IC(n) methods.

The Harwell(0) method seems to ‘be surprisingly competitive,
considering that it represents a complete factorization. However, the
results of Munksgaard [Munk80] show that, as would be expected, this
competitiveness does not extend to larger systems. When compared to the
other complete factorization method, MICD(0Q), the benefits of minimum
degree pivoting are again clearly evident. 1In each case, the Harwell(0)
method produced fewer fill-ins and required substantially less time to
perform the factorization. Another interesting observation is that the
Harwell(0) method was not influenced by the grid point ordering schene
used, while the MICD(0) was definitely sensitive to the ordering scheme
used. For the MICD(0) method, the number of elements in the lower
triangular part of the factorization varied from 584 to 326. This was
reflected in the time required to calculate the factorization, which

varied accordingly.

The DS and BDS methods were somewhat disappointing. The DS method,

while 1improving the eigenvalue distribution tremendously, did 1little to
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improve the rate of convergence associated with our conjugate gradient
routine. The BDS method was equally ineffectual. It produced almost no
improvement in the eigenvalue distribution over the DS method, and only
a modest improvement 1in the rate of convergence. Unfortunately, this
improvement in the rate of convergence was overshadowed by the cost of
the factorization. As we will see in section 4.6.3, the BDS method is

not as worthless as these results would indicate.

The RBIC(0) meth?d proved to be reasonably successful. Where they
could be compared, 1its results fall almost exactly half way between
those of the BDS and IC(0) methods. Only minor fluctuations in results
occurred between the various grid point ordering schemes. The RBIC(3)
method, on the other hand, proved to be a major disappointment. In
every category, it was inferior to the RBIC(0) method. It is unclear
whether these results are characteristic of the RBIC(3) method, or

simply a consequence of the size of the test problem.
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Natural Ordering

FACTOR SOLVE
Preconditioning Total
Number of Number
Method Elements Time of Time Time
in L Iterations

None 0 0.0 24 0.05 0.05

DS 0 0.0 24 0.05 0.05

BDS 56 0.01%* 20 0.05 0.06

1C(0) 112 0.01%* 10 - 0.03 0.04

1C(1) 161 0.02%* 7 0.02 0.04

IC(3) 245 0.03*% 6 0.02 0.05

MIC(0) -2 112 0.01 11 0.03 0.04

MICD(10 °) 249 0.03 6 0.02 0.05

MICD(0) -2 455 0.07 1 0.01 2.08

HARWELL(10 °) 210 0.03 4 0.01 0.04

HARWELL(0) 290 0.03 1 0.01 0,04
Table 4.2 - Timing and convergence data resulting from solving the test
problem.

GETEIG
Preconditioning  Spectral Number Statistics on (Ai - 1.0)
of Distinct

Method Radius Eigenvalues Range Mean Std. Dev.
None 8.876 33 7.518 3.00 2.059
DS 2,219 33 1.879 -0.26E-6 0.515
BDS 2.377 64 1.773  -0.32E-6 0.399
IC(0) 1.329 54 0.858 -0,0219 0.164
IC(l) 1.205 55 0.512 -0.0065 0.074
1C(3) 1.108 45 0.245 -0,0029 0.036
MIC(0) -2 2.960 49 1.499 0.361 0.347
MICD(10 7) 1.220 57 0.169 0.025 0.033
MICD(0) -2 1.00 1 0.0 0.0 0.0
HARWELL(10 ©) 1.076 38 0.057 0.013 0.014
HARWELL(0) 1.00 1 0.0 0.0 0.0
Table 4.3 - Data on the eigenvalue distribution of the symmetrically

preconditioned test matrix.
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Point Red/Black Ordering

FACTOR SOLVE
Preconditioning Total
. Number of Number
4 Method Elements Time of Time Time
é in L Iterations
DS 0 0.0 24 0.05 0.05
) RBIC(0) 88 0.01%* 17 0.04 0.05
Lf. 1¢(0) 112 0.01% 13 0.03  0.04
MIC(0) -2 112 0.01%* 24 0.06 0.07
MICD(10 ©) 241 0.03 5 0.02 0.05
*, MICD(O)  _, 326 0.04 1 0.01  0.05
4 HARWELL(10 ) 211 0.02 4 0.01  0.03
HARWELL (0) 290 0.03 1 0.01  0.04
Table 4.4 - Timing and convergence data resulting from solving the test
problem.
GETEIG
Preconditioning Spectral Number Statistics on (Ai - 1.0)
of Distinct
Method Radius Eigenvalues Range Mean Std. Dev.
DS 2,194 33 1.879 0.16E-6 0.515
RBIC(0) 1.660 52 1.333 -0.004 0.346
1C(0) 1.438 31 1.172 0.033 0.292
MIC(0) -2 18.827 32 13,951 3.821 4.539
MICD(10 ©) 1.129 31 0.098 0.019 0.021
MICD(0) -2 1.00 1 0.0 0.0 0.0
HARWELL(10 ) 1.076 34 0.063 0.015 0.016
> HARWELL (0) 1.00 1 0.0 0.0 0.0

Table 4.5 - Data on the eigenvalue distribution of the symmetrically
preconditioned test matrix.

Cemad AR ad A
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Line Red/Black Ordering

FACTOR SOLVE
Preconditioning Total
Number of Number
Method Elements Time of Time Time
in L Iterations
BDS 56 0.01%* 20 0.05 0.06
RBIC(0) 88 0.01* 16 C.04 0.05
1C(0) 112 0.01%* il 0.C3 0.04
MIC(G) -2 112 0.01 14 0.04 0.05
MICD(10 °) 301 0.04 6 0.02 0.06
MICD(0)  _, 584 0.09 1 0.01  0.l0
HARWELL(10 °) 219 0.03 4 0.01 0.04
HARWELL(0) 290 0.03 1 0.01 0.04
Table 4.6 - Timing and convergence data resulting from solving the test
problem.
GETEIG
Preconditioning Spectral Number Statistics on (ki - 1.0)
of Distinct
Method Radius Eigenvalues Range Mean Std. Dev.
BDS 2,180 64 1.773  ~-0.150 0.399
RBIC(0) 1.722 56 1.363 -0.0047 0.321
1Cc(0) 1.406 61 1.000 -0.013 0.173
M1C(Q) -2 13.192 53 9.174 0.653 1.359
MICD(10 °) 1.377 52 0.288 0.045 0.059
MICD(0) -2 1.00 1 0.0 0.0 0.0
HARWELL(10 °) 1.072 33 0.056 0.013 0.014
HARWELL(O) 1.00 1 0.0 0.0 0.0
Table 4.7 - Data on the eigenvalue distribution of the symmetrically

preconditioned test matrix.
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2-Line Red/Black Ordering

FACTOR SOLVE
Preconditioning Total
Number of Number
4 Method Elements Time of Time Time
E in L Iterations
BDS 56 0.01%* 20 0.05 0.06
: RBIC(0) 88 0.01%* 15 0.04 0.05
é RBIC(3) 164 0.02% 16 0.05 0.07
IC(0) 1i2 0.01%* 11 0.03 0.04
MIC(0) -2 112 0.01 12 0.03 0.04
3 MICD(10 ) 280 0.03 7 0.03  0.06
L MICD(0) -2 562 0.09 1 0.01 0.10
- HARWELL(10 %) 208 0.02 4 0.01 0.03
HARWELL(Q) 290 0.03 1 0.01  0.04
2
) Table 4.8 - Timing and convergence data resulting from solving the test
problem.
GETEIG
Preconditioning Spectral Number Statistics on (xi - 1.0)
of Distinct
Method Radius Eigenvalues Range Mean Std.Dev.
BDS 2.196 64 1.773  -0.,12E~6 0.399
RBIC(0) 1.770 55 1.363 -0.004 0.324
RBIC(3) 2.052 49 1.575 -0.128E-3 0.349
1C(0) 1.319 60 0.904 ~0.015 0.163
MIC(O) -2 5.449 51 3.341 0.440 0.562
MICD(10 ) 1.484 53 0.376 0.046 0.072
MICD(0) -2 1.00 1 0.0 0.0 0.0
HARWELL(10 °) 1.073 34 0.058 0.014 0.015
HARWELL(0) 1.00 1 0.0 0.0 0.0

Table 4.9 - Data on the eigenvalue distribution of the svmmetrically
preconditioned test matrix.

* - Tests using the routines from Phase III show that these values could
. be reduced by up to a factor of 3 if the corresponding preconditioning
1 strategy had been efficiently implemented.
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Natural Ordering (Part 1)

L 2 Graph Preconditioning
0 Number Strategy
G 1 None
2 -~ --0Ds
f 3 ———— BDS
A A (1)
E O ) 5 == IC(1)
N 6 - ~ - - IC(3) -
% 7 ———— Harwell(l10 °)
]
F
R ~€7
E
S
I
D
U
A
L -4 7
N
0
R
M
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\ 6
-8 . —- ; ; —
a 10 20
5 i5 25
ITERATION

Graph 4.1 -~ Shows the log base 10 of the residual norm as a function of
the iteration number.
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Natural Ordering (Part 2)

L 2 Graph Preconditioning
Q Number Strategy
G 1 IC(0)
8 ~ § - =~ = ~ MIC(O0)
A ~ — IC(1)
s N . 4 - ~ - ~ IC(3) -2
£ 0 + N 5 MICD(10 ) _,
. N <\ AN 6 - - - - Harwell(l0 °)
Q
\
Q
£
! -
[ R —e -
€
S
I
D
| U
! A
i L -4 (=
N
o
R
M
-8 T N\
N 2
-8 1 ! 1 I ! }
 { N | 1 T -1
o 4 8 iz
2 8 10
ITERATION

Graph 4.2 -~ Shows the log base 10 of the residual norm as a function of
the iteration number.
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Point Red/Black Ordering

L 2 Graph Preconditioning
a) Number .  Strategy
G l —— DS
N 2 - - - - MIC(0)
? ~ 3 ——— 1C(0)
S 4 - - = - RBIC(O)_2
E o0 + 5 ~————— MICD(10 )_2
6 - - - - Harwell(l0 )
1 \
0
0
F
-+
R -2
E
S
I
D
U
A
L. _4 -
N
a
R
M
-8 T
1
-8 ~+ — — —+- +
o 10 20
5 15 25
ITERATION

Graph 4.3 - Shows the log base 10 of the residual norm as a function of
the iteration number.
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Line Red/Black Ordering

L 2 T Graph Preconditioning
s} Number Strategy
G N ] =——— BDS
- 2 - - - - RBIC(0)
? N 3 — 1¢(0)
4 - - - - MIC(0) _
s, 1 N 5 ——— MICD(1072)_,
B 1 6 - - - - Harwell(10 °)
1 \
o
q \
F
R~ 7
13
S
I
D
J
A
L -4 T
N
Q
R
M
-8 T
-8 + t —t -
0 10 20
5 15

ITERATION

Graph 4.4 - Shows the log base 10 of the residual norm as a function of
the iteration number.
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2-Line Red/Black Ordering

L 2 T Graph Preconditioning
8] Number Strategy
G 1 =———— BDS
- > - 2 - - - - RBIC(O0)
A : 3 RBIC(3)
S 4 - - = ~ MIC(O)
£ O T 5 —— 1C(0) -2
6 - - - - MICD(10 )_2
5 7 ——— Harwell(10 )
D
F
R 2T
E
S
I
O
u
A
L -4 T
N
0
R
M
-8 T 1
3
-8 + —+ F —
a 1Q 20
S is
ITERATION

Graph 4.5 - Shows the log base 10 of the residual norm as a function of
the iteration number.
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4.5.1. Introduction

During this phase, I attempted to analyze each of the
preconditioning strategies and determine how easily they could be
adapted to our multiprocessor. I assumed that matrix A is of order nm
and that my multiprocessor consisted of n/2 processors (p=n/2). Under
these assumptions, Table El (Appendix E) shows the steps involved in
solving a system of equations using our preconditioned conjugate
gradient algorithm. Also included are their relative cost in arithmetic
operations and the amount of data that must be passed between
processors. Where appropriate, the relative cost of performing a
particular factorization was determined, as well as the cost of using it

to solve the system of equations z = C—lr.

As a matter of terminology, I assumed that each factorization

produced a preconditioning matrix of the form

¢ = pTT

where T is a unit lower triangular matrix and
D is a positive diagonal matrix.

The system z = C-lr was solved using forward and backward substitution

in the following manner:

it =r

Tz = ¥ le.
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In attempting to analyze each of these events, I relied heavily on the
notation defined in figures Bl - B4 of Appendix B. Furthermore, I
assume that vectors x, b, r, z, and t, and matrices T and D are
partitioned 1in the same manner as matrix A. Also, if matrix A contains
a block Ei and an element aij’ the Ei and Zij represent the
corresponding block and element in t, respectively. Figure 4.1 shows
which blocks of matrix A, of the unknown vector x, and of the right~hand
side vector b are stored in processor i (i = 2,---;% - 1) for each of
the grid point ordering schemes. For processor 1 and n/2, the storage
requirements are slightly different, in that certain blocks mentioned in
figure 4.1 are undefined. Processor i is used to calculate and store
the portions of vectors r, z, and t, and matrix D corresponding to chése

portions of vector x referred to in figure 4.1, as well as portions of T

that correspond to those blocks of matrix A cited in figure 4.1.
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A

Data Initially stored in Processor i for a

CHes aadt S o b B it

Line Point 2-Line
Naturally Red/Black Red/Black Red/Black
Ordered Ordered Ordered Ordered
Matrix Matrix Matrix Matrix
Tri-1 Toi-1 Dy Q
Ty Toy Di+n/2 Fy d- 2|172]
Epyoy Eyy_p B, c, k= 2|-1/2| -1
Eri-1 Eyi-1 B X9 i-1
Byt By Ey %3
X4-1 Xi-1 Fia Dyi-1
i %1 By by
byi-1 Dyi-1 Xy
by b4 Xi4n/2
by
bi-+n/2

Figure 4.1
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4.5.2. Results

First, I 1looked at those preconditioning strategies whose
suitability for our multiprocessor is not influenced by the grid point
ordering scheme usedf These include the DS, BDS, Harwell(e) and RBIC(n)
methods. The Harwell(c) wmethod 1is the only one from this group that
would be extremely difficult to implement. The minimum degree pivoting

would require exorbitant amounts of interprocessor communications.

The remaining three methods from this group can all be easily
adapted to our multiprocessor. The DS is by far the simplest. No work
is required during the factorization phase, with T=TIand D= diag(A).
Solving the system 2z = C_lr is simply a matter of calculating

z, = E;Iri, which can be done in m arithmetic operations with no

i
interprocessor communications required. Each processor would solve two

such systems for a total of 2m arithmetic operatioans.

The BDS method 1s equally simple. Here, processor i is required to
perform the factorization of two uncoupled tri-diagonal matrices (TZi-I

and T This will require ~6m arithmetic operations per processor.

21
Solving the system z = C—lr is equivalent to solving n uncoupled systems
of the form z, = Tzlri (t =1, +++, n). Each processor will then solve
two of these systems, requiring a total of ~10m arithmetic operations

and no interprocessor data transfers.

The RBIC(n) method, by its very design, is ideally suited for our
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multiprocessor. The n/2 uncoupled systems allow each processor to work

totally independently, while performing the factorization and solving

the system z = C-lr. Each of the uncoupled systems will be of order 2m

with 3m-2 non-zero off-diagonal elements in its upper triangular part.
To perform the RBIC(Q) factorization, each off-diagonal element aij will
be involved in the following operatiomns:
;ij := aij/ai
Zj = Ej - Zijaij
where initially D is set to diag(A).

This results in an expenditure of 3 arithmetic operations per off-
diagonal element. Thus, the RBIC(0) factorization requires a total of
~9m arithmetic operations per processor. The RBIC(3) factorization 1is

slightly more complicated. I assume that I am working with a 2-line

red/black matrix. If fT = diag(f?, fg, oo, i:/z), then processor i

factors Qi into iiﬁiﬁz’ where figure 4.2 shows the structure of iz and

Di = diag(ﬁl,---,azm). The elements of D

following manner:

N and Zf are calculated in the

dyrmay =By bt B g8ig T Fimf e
- Ej—m+1ej—m+1 - Ej—mcj-m
by = by - Zj-m+1cj—m+1 - ¥j—m+2ej-m+2 - Ej—lgj-l gj = bj/ﬁj
gy = —?j-m+2°j—m+2 Ej 1= gj/ﬁj

f ¥, := fj/aj

I S O S
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ey 1= —bj_lcj_1

c, :=c,/d a., :=1
h| i3
for § =1, ¢e¢¢, 2m
where any elements not defined (ie. subscripts < 0)
are assumed to be zero.

When simplified, we find that the RBIC(3) factorization requires -~27m

arithmetic operations per processor,.

|
!
I
|
!
|
|
(
I

Figure 4.2
Solving z = C-lr, when matrix C is given as iﬁfr, requires approximately
2(NZL) arithmetic operations to solve Tt = r and 2(NZL) + 2m to solve
~T

oy |
L'z =D “t, where NZL is the number of non-zero off-diagonal elements in

T. After the RBIC(0) factorization, NZL will equal 3m-2, while after
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the RBIC(3) factorization NZL will equal ~6m. This means that ~lé4m
arithmetic operations per processor are required if the RBIC(0) is used,
while i{f the RBIC(3) is used, ~26m arithmetic operations per processor
are needed. In either case, no 1interprocessor data transfers are

required during the factorization phase or while solving z = C-lr.

Next, I will look at those preconditioning strategies that require
a certain number of fill-ins be kept, or at least calculated, during the
factorization. These methods include MICD(c), MIC(s), and IC(s) for
s>0. Unfortunately, including fill-ins greatly complicates the process.
They increase the interdependence between processors both during the
factorization phase and while solving z =C 'r. For example,
processor 1 may be forced to wait for processor i-l to finish
calculating before it can proceed with its work. As a result, only a
fraction of our n/2 processors may be able to operate concurrently.
This greatly reduces the advantage of having those n/2 processors. The
choice of grid point ordering scheme can reduce the severity of this
problem somewhat, but not enough to make any of these methods suitable

for our multiprocessor.

Finally we come to the IC(0) method. Unlike the other methods, its
suitablity is influenced by the grid point ordering scheme used. If we
are working with a naturally ordered matrix, the factorization process
is recursive in nature. We find that processor 1 cannot start its part

of the factorization process until processor i-1 has started calculating
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52(1_1). These values are needed by processor i before it can start
calculating 521_1. In essence, only two processors will be able to
function concurrently while performing the factorization. A similar

problem arises when solving z = C-lr.

Changing to the 2-line red/black ordering does not help the
situation that much. The only advantage gained 1s that now LF/QJ
processors can be working concurrently while performing the
factorization. The remaining n/QJ processors must still wait until
these processors have calculated the data they need. This is still an

undesirable situation.

The line red/black ordering produces a matrix much more suited for
performing the IC(0) factorization on our multiprocessor. Notice that

the blocks T (1 =1, ««s, u/2) are not directly interrelated. This

2i-1
means that processor 1 can factor TZi—l without any interprocessor
communication. This requires ~3m arithmetic operations. For
processor i to complete the factorization, it must now get the values
521+1 from processor i+l. With these m values, processor i can finish
the factorization in ~9m arithmetic operations. An additional m
~ fv—l
arithmetic operations are required to calculate EZi-Z = D21—1E21—2'
These last values will be needed by processor i to solve z = C-lr. This

makes a total of ~13m arithmetic operations and m data transfers per

processor to calculate the IC(0) factorization.

Solving the system z = C“lr can also be easily done in this case.
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During the forward substitution phase (It = r), tZi-l can be found in

~2m arithmetic operations with no interprocessor communications. The
elements of tZi can then be found in ~6m arithmetic operations, as long

as the values c21+1 are obtained from processor i+l. The backward
1

substitution process (sz =D ‘t) is very similar in nature. The

elements of z,; are first calculated using ~3m arithmetic operations and

i

no interprocessor communications. The values 254,90 are then obtained

from processor i~1l. Then the values 2z are calculated using ~/m

2i-1

arithmetic operations. The entire process requires a total*of ~18m

arithmetic operations and 2m data transfers.

The point red/black matrix is equally suited for performing the
IC(0) factorization on our multiprocessor. In fact, it has one
advantage over the line red/black matrix in that the factorization can
be done without Interprocessor communications, The structure of the

peint red/black matrix is such that blocks D, through Dk are not altered

1

during the factorization, ie. D, =D, (i = l, «¢e, k). This allows us

i i

to store those values of D and Di+ needed by processor i during the

i-1 1

set-up phase. Thus, if processor i has blocks Bi’ Ei-l’ Ei’ Fi—l’ Fi’

D 1 and Dk+i avallable to it, the factorization can be

1* Hei-1)20 Heaen)

performed without any data being transferred between processors.

Processor i will perform the following calculations:

L e
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Dy =D Heynye = Huonz Bt = Benn
I, S T AT _ o1 T AT _ ol T
Eio1 ® BB By By Fy By =Dy By
NT  T.T T 1T
By = DBy Py =D Fi
D =D - diag(E ) - dia (B §T) - diag(F FT)
i+k - Pi+k 1-1"4~-1 8185 B85y

for a total of ~13m arithmetic operations.

Solving the system 2z = C_lr will still require that some
interprocessor data transfer occur. During the forward substitution
phase, processor i will need from processor i-1 the m/2 elements of ti—l

corresponding to H(i-1)2’ and from processor i+l the m/2 elements of

t corresponding to H A similar set of transfers will be

i+1 (i+1)1°

required during backward substitution, except involving elements from

and z The entire process of solving z = C-lr will require

2 i+k-1 1+k+1"

~18m arithmetic operations and 2m data transfers per processor.

As I have indicated, only a handful of the chosen preconditioning
strategies can be efficiently implemented on our multiprocessnr. The
DS, BDS and RBIC(n) methods can be implemented regardless of the grid
point ordering scheme used. The IC(0O) method, on the other hand, {is
sensitive to the structure of the matrix A. Only when matrix A has a
structure similar to that of the point red/black matrix or line
red/black matrix can the IC(0) factorization be done efficiently.
Implementation using the point red/black matrix has an added advantage
in that the factorization can be performed without iInterprocessor

commnication.
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4.6.1. Introduction

From the results of Phase I and Phase 1I, the following
combinations of preconditioning strategies and grid point ordering

schemes are chosen for further analysis:

1) IC(0) with a point red/black matrix

2) BDS with a line red/black matrix

3) RBIC(Q) with a 2-line red/black matrix.

For comparison purposes, I also consider a naturally ordered matrix with
no preconditioning. These combinations are compared relative to test
matrices of order ~l1000 arising from test problem 1 (n=32), test
prtoblem 2, and test problem 3 (see appendix D). The numerical

experiments are similar to those conducted during Phase I.

The size of these problems made calculating all the distinct
eigenvalues of the symmetrically preconditioned test matrices extremely
expensive. I therefore limit myself to examining only the extreme
eigenvalues, In each case, I calculate the number of distinect
eigenvalues in the interval {0.0 , 1.2]. Then, using the estimate of
the spectral radius (p) generated by the Harwell routine EAl4A, I
calculate the number of distinct eigenvalues in the upper part of the

spectrum defined by the interval [0.8p , pl. Of primary interest is the
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number of eigenvalues that migrated Into the lower part of the spectrum
as a result of the preconditioning. The greater the number of
eigenvalues in the interval [0.0 , l.2], the more successful the

preconditioning strategy.

Finally, the effect of different values of ¢, the cost 1in time
units to transfer a plece of data between neighboring processors, on the
efficiency of each of the preconditioning strategies is examined. For
each problem, I calculate the total number of time units required by a
typical processor in our system to generate our answer. This was done
using the following equation:

Total Time = Preprocessing Time
+ [Number of Iterations x Time Units per Iteration]
where,
Preprocessing Time = Number of Arithmetic Operations
+ {¢ x Number of Data Transfers],
Time Units per Iteration = Number of Arithmetic Operations/iteration
+ [¢ x Number of Data Transfers/iteration].
Appendix E outlines the number of arithmetic operations and data
transfers required by each processor to perform each step of our

preconditioned conjugate gradient algorithm.
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4.6.2. Software

Most of the software used during this phase is similar to that used
during Phase 1. However, more efficient routines BDIAG, ICCGO, and
RBICO are developed to implement the BDS, 1C(0), and RBIC(O0)
factorizations, respectively. Each of these three routines is based on
the following algorithm:

Algorithm 4.1

1) D = diag(a)

2) For {1 = 1 to N do

3) For j & B} do
4) Iy, = a/3
5 d,=4d,-1
) dy = dy = 1ig8;

where N = order(A), and
set R? defines which columns {n row i are to be
used in calculating the factorization.
For these three routines, the following 1s how set R: is defined:
BDS - R? = { j | j=i+l and aijto }
16(0) - R} = { 3 | 1<} and 2% }

RBIC(0) - R} = { § | 1<i<i+m and a; %0 1

| U sy
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4.6.3. Results

The data from the numerical experiments can be found at the end of
this section. Tables 4.10, 12, and 14 contain the timing and
convergence data pertaining to solving each of the test problems.
Tables 4.l11, 13, and 15 contain the corresponding data on the extreme
eigenvalues of the symmetrically preconditioned test matrices. Graphs
4.6 - 4.8 show the log10 of the norm of the residual as a function of
the iteration number. Graphs 4.9 - 4,11 show what effect the

.

interprocessor communications cost (¢) can have on the amount of work

required by each processor to calculate an acceptable answer.

Notice that in these cases, the time required to perform the
desired factorization 1s trivial when compared to that required to
actually solve the system. This would indicate that the savings incured
by using the point red/black ordering with the IC(0) method, as opposed
to using the line red/black ordering or block cyclic reduction, may not
be that significant In the 1long run. However, unless circumstances
dictate otherwise, there 1s no reason not to utilize the point red/black

ordering and enjoy what savings it can provide.

For these test problems, the RBIC(0) method prove at least an equal
to the IC(0) method in efficiency. Only in the case of test problem 1
does the IC(0) prove more efficient than the RBIC(0) method. The two
methods are extremely close {In the number of iterations required to

solve the test problems. The RBIC(0), therefore, has a slight advantage




56

in that each iteration requires fewer arithmetic operations due to the
fewer nonzero elements in the wupper triangular part of its
factorization. The BDS method is consistently a distant third, though

it does represent a improvement over no precoanditioning.

Unfortunately, the matrices symmetrically preconditioned by the BDS
and RBIC(0) methods consistently require more than the 750 iterations I
have allotted for calculating their eigenvalues. As a result, these
counts may be iIncomplete, but should be reasonably close. The BDS
method results in substantial improvement in the eigenvalue distribution
as compared to the matrix without preconditioning. The RBIC(0) and
IC(0) methods then each register moderate subsequent improvements. The
IC(0) method, as would be expected, produces the "best" eigenvalue
distribution of the three. 1t records the smallest spectral radius and
causes the greatest number of eigenvalues to migrate into the lower

interval.

Looking at Graph 4.9 - 4.11, we see that as the cost to transfer a
plece of data between neighboring processors (¢) increases, the
advantages of using the RBIC(0) factorization also increase. For
¢ = 10, which may not be unrealistic for loosely connected processors,
the RBIC(0) saves between 1500 and 60,000 time units over the IC(0)
method. This advantage stems from the fact that the RBIC(0) method
requires no data transfers to solve the gsystem z = C-lr, while the IC(0)

method requires 2m data transfers.
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Test Problem 1 (n=32)

Preconditioning FACTOR SOLVE
Number of Number of
Method Elements in L Time Iterations Time
None 0 0.0 92 2.98
BDS 992 0.03 70 2.77
RBIC(0) 1504 0.03 49 2.03
1C(0) 1984 0.02 46 1.92

Table 4.10 - Timing and convergence data pertaining to solving the given

test problem, such that ||r||<10-6.

St ok aaian

Preconditioning Spectral Number of Number of
Method Radius Eigenvalues Eigenvalues
. in lower interval in upper interval
A .
: None 8.664 10 9
BDS 2.281 30* 4
RBIC(0) 1.796 kYA 6
1C(0) 1.591 46 3

* Number of Eigenvalues found after 750 {teratioms.

Table 4.11 - Data on the extreme Eigenvalues
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Test Problem 2

Preconditioning FACTOR SOLVE
Number of Number of

Method Elements in L Time Iterations Time
None 0 0.0 99* 2.98
BDS 960 0.03 104 3.75
RBIC(0) 1456 0.03 75 2.86
1C(0) 1921 0.02 75 2.99

* Ilrggll = 0.105E-02

Table 4.12 - Timing and convergence data pertaining to solving the given

test problem, such that Ilr||<10-6.

Preconditioning Spectral Number of Number of
Method Radius Eigenvalues Eigenvalues
in lower interval in upper interval
None 8.579 9 11
BDS 2.257 29*% 5
RBIC(O) 1.798 35% 5
IC(0) 1.684 49 3

* Number of Eigenvalues found after 750 iterations.

Table 4.13 - Data on the extreme Eigenvalues.
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Test Problem 3

Preconditioning FACTOR SOLVE
Number of Number of
Method Elements in L Time Iterations Time
None 0 0.0 99* 3.02
BDS 960 0.03 93 3.64
RBIC(0) 1456 0.02 68 2.60
IC(0) 1921 0.02 66 2.66

* ilrggll = 0-288E-02

Table 4.14 - Timing and convergence data pertaining to solving the given

test problem, such that ||r||<10_6.

Preconditioning Spectral Number of Number of
Method Radius Eigenvalues Eigenvalues
in lower interval in upper interval
None 22.977 4 1
BDS 2.236 31% 7
RBIC(0) 1.903 31% 5
IC(0) 1.634 49 6

* Number of Eigenvalues found after 750 iterations.

Table 4.15 - Data on the extreme Eigenvalues.

1. lower interval defined as [0.0,1.2]

L upper interval defined as [0.8p,p] , where p = spectral radius.
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Test Problem 1 (n=32)

L 2 T Graph Preconditioning
@] Number Strategy
G ] ~————01- None
B 2 - BDS
A \\ 3 ———— RBIC(0)
S : 4 - - - - IC(O)
1 EOC T
1 1
‘- 0
0
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| e
€
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I
‘ D
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t,‘ L -4+
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R
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ITERATION

Graph 4.6 - The log base 10 of the norm of the residual as a function
of the iteration number,
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Test Problem 2

2 T Graph Preconditioning
Number Strategy
1l ———— None

2 -~--BDS
3 ——— RBIC(0)
4 - - -~ IC(D)

XX0V0Z r>coHom>om o ok mn>m OOor

2
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0. 40 o 80 ' 120 !
20. 60. ) 100. )
ITERATION

Graph 4.7 - The log base 10 of the norm of the residual as a function
of the iteration number. i
|
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Test Problem 3

4 T Graph Preconditioning
Number Strategy

1 ~———— Yone

2 ~ - - - BDS

3 ——— RBIC(0)

4 - ~ = = IC(0)
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Graph 4.8 - The log base 10 of the norm of the residual as a function
of the iteration number.
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Test Problem 1 (n=32)

T 280. T Graph Preconditioning 1
I Number Strategy
E 1 BDS
2 =em——— IC(0)
U 3 RBIC(0) 2
T
T i
g 240.
I
N
T
H 3
(]
U
S 190. T+
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N
D
S
140. T %
80. —— f -+ t 2
@] 10 20
S 15 25

BDATA TRANSFER COST

Graph 4.9 — Number of time units required to solve the given test
problem vs. the cost in time units to transfer one plece of data
between two processors.
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Test Problem 2

W' Graph Preconditioning 2

Number Strategy 4

] ———— BDS -

2 1C(0)

3 ————— RBIC(0)
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+ = % % .
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DATA TRANSFER COST

Graph 4.10 - Number of time units required to solve the given test
Problem vs. the cost in time units to transfer one piece of data

between twO processors.
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Test Problem 3

T 400. T Graph Preconditioning
I Number Strategy
M 1 BDS 1
E 2 —— IC(0) 2
U 3 RBIC(0)
N 38S0.
I
T
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I
N 300.
g 3
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U
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100. ! 1 1 1 |
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Graph 4,11 - Number of time units required to solve the given test
problem vs. the cost in time units to transfer one piece of data
between two processors.
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5. Conclusions

As we have seen, only a limited number of our original
preconditioning strategies proved suitable for implementation on our
multiprocessor. The DS, BDS, and RBIC(0) methods proved acceptable no
matter which grid point ordering scheme was used. The IC(0) method, on
the other hand, was only feasible when teamed with point red/black or
line red/black matrices. When point red/black matrices were used, the
IC(0) factorization could be performed without any interprocessor

communications.

The numerical experiments showed that, for our given test problems
of order ~1000, the RBIC(0) method, in most cases, was more efficient
than the IC(0) method. This was especially true when viewed from the
standpoint of our hypothetical multiprocessor. For values of ¢>>1, the

RBIC(0) method was substantially faster.

While I realize that these few test results do not prove that the
RBIC(0) method is a superior method in all cases, they do indicate that
the RBIC(0) method could be an efficient tool for preconditioning on a
multiprocessor. More testing 1is needed to identify the scope of its

potential.
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Appendix A

Grid point ordering schemes
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Natural Ordering for un=6

6 12 "18 "24 "30 36

s ‘11 717 "23 "29 35

s ‘10 "16 22 "28 34

3 "9 ‘15 ‘21 "27 '33

2 ‘s 14 20 "26 32

I "7 "13 "19 "25 31
Figure Al

Point Red/Black

Ordering for n=6

3 t24 79
+

2 T3 '8

1 to2 7

+21 %6 T27 "12 *33 18

*30 15 T36

20 5 ‘*26 ‘11 *32 "17

+29 "14 t35

+19 4 *25 "10 Y31 T16

+8 “13 T34

Figure A2
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Line Red/Black Ordering for n=6

6 *24 "12 T30 "18 Y36
23 "11 Y29 "17 *35
4 %22 "10 %28 "16 T34
3 %1 "9 *27 15 Y33
2 %20 "8 t26 "14 *32

1 19 7 '25 13 31

Figure A3

Two Line Red/Black Ordering for n=6

6 "12 Y30 *36 "18 24
s 11 Y29 *35 "17 "23
s 10 Y28 T34 "16 22
33 15 21
2 '8 t26 T32 "14 20

1 7 25 31 13 19

Figure A4
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Non-zero Structure of Matrix with Natural Ordering
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Non—-zero Structure of Matrix with Point Red/Black Ordering
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Non-zero Structure of Matrix with Line Red/Black Ordering
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Non-zero Structure of Matrix with 2-1ine Red/Black Ordering
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Appendix B

Matrix block structures

Appendix B shows the block structure of the matrices associated
with the four grid point ordering schemes defined in Appendix A. I

assume discretization took place on a nxm grid, with n being even.

i
i
i
!
1
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Natural Ordering

SANERMR AR 3

k vt —
4 T1 E1
El T2 E2
BTy By
B Tiv1 Einy
| Eie1 Tav2 Biao
1
n-2 Tn—1 En—l

é En—l Tn

. ; where Ei's are diagonal matrices of order m and

Ti’s are tri~-diagonal matrices of order m.

Figure Bl
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Line Red/Black Ordering

-Tl 1€y
T, |E2 E,
Tri1 l *t Byl
Toit1 || Eys Eoien
. | ek
n-3 n-3
. |
n-1 n-2 n-l
fr T hm——— ==
|
E3 ces 14
E E | T
2i-1 24 | 21
Eyier *°° I Tociv1)
|
B3 E-2 ! To-2
L Ea-1 l Tn_

where Ti and Ei are the same as those used in figure Bl

Figure B2
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2-1ine Red/Black Ordering

> T -
Q) | ¢
T T
Q | F5 ¢
LN ' L N ] 3R IR
Q | LN CT
21-1 2i-1
| T T
Qi+1 Fai Cota1
| T
%-3 ' " Cp-3
T T
F
_________SP'LI_._____.__._P'E_P'J
€ Fy Q0
(
€3 Ry
LN ] L3R 3 | L N ]
C,. .\ F | 9
2i-1 “2i ' 21
Coie1 *°° I (i+1)
|
€p-3 Fp-2 | %-2
c
_ o1 %
where k = n/2 and p = Z(rk/Z])
o Af2t-t Fa-tf o 0 Fag o 1o o
1 7By Ty 170 o 1 T|Ey O
where T1 and Ei are the same as those used in figure Bl.

If p # k, ignore last row and column.

Figure B3
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Relating the block structure of the point red/black matrix to that
of the naturally ordered matrix 1is not as easy as with the line
red/black matrix and the 2-line red/black matrix. The integrity cf the
Ti and Ei blocks 1s not maintained during the reordering. A
relationship does exist between the two, but not at the block level. We

find that the point red/black matrix (A’) and the naturally ordered

matrix (A) are related such that

T
A’ = P AP

where P is the permutation matrix

P = [PI’PZ’ ""Pn;QI)QZa ""Qn] ’
in which for k = 1, 2, es«¢«, n/2

P "',e

k-1 = B30y 2 300)+27 € §(k)+4° j(k)+m=21

QUr-1 = 18500+1°% 500)+3° "2 jk)+m-1 )

Por = le1qky e 1(k)+2?

’el(k)+m-2]’

Ui = [e3y-10C200)+1° * " 810k ) 4m-3 )
with 1(k) = 2(k-1)m+l and 1(k) = j(k)+mFl.

Figure B4 outlines the block structure for a point red/black matrix.

The blocks here are different from those found in figures Bl - B3.
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Point Red/Black Ordering

T T -
| B1 By
T T T
! | F1 B; By
T T T
D51 | Fi-2 Bioy By
T T T
Dy | Fio1 By B
T T T
D ] Fi Biwn Biyg
TT
B | Fr-1 B
1 | Dt
B, % | D+
LR ] L3R 2N 3 * e e | L
Big By Fig | De+i-1
Eia1 By By | Dyti
By Bigg Figy | Dtitl
Be-1 Bl °n
where k = n/2 and
I O B e S O Lt
i G12 Biz i 0 Hiz i 0 0 i FiZ 0

with Hi’ Eil’ F12 and Gi being diagonal matrices of order m/2

and Bil and B12 being upper and lower bi-diagonal matrices of order m/2

Figure B4
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Appendix C

User input parameters

Appendix C outlines the combinations of grid point ordering schemes and
preconditioning strategies to be examined during phase I. The
parameters and functions required by subroutine FACTOR to generate each
of the combinations are defined. The abbreviations used to describe the

various preconditioning strategies are defined in section 4.3.

C b e - o= Aoy .
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9‘ ‘ Natural Ordering (NTYPE = 0)

OPTION vector Functions
2. Preconditioning
§ Strategy 1] 2)13)4)ste c EUSE | FILL
:; None -i-!l-=-{-1- 1 - - -
b | DS olojof1]o]lo] - | EUSEl| FILL
3 BDS olojo|1}oto - EUSE2 | FILLI
| 1¢(0) olo]Jolo]lolo - - FILLL
$P—
g |
) Ic(1) ojlolojlofolo - - FILL2
. IC(3) ololo}lo]ol|o - - FILL3
MIC(0) ojfofolof1]o - - FILL1
wARWELL(10°2) |1l 1lofol 1] o] 102} - -
4
HARWELL (0) 1l1}olo]1}o} o0.0 - -
- MICD(1072) ol1flolofl1]o]w0?]| - -
MICD(0) ol1|lojo}1}o} 0.0 - -
:

Table Cl

-
Yl
g
'S
i1
2 |
i |
5
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Line Red/Black Ordering (NTYPE = 1)

OPTION vector Functions
Precondtitioning
Strategy 1 2 31 4 3 6 c EUST FILL
BDS oloflo]l1flolo - EUSE2 | FILL1
1¢(0) o{ofojlof|l 0] - - FILLL

HARWELL(102) |1}l 1]ofof 1| of 102 - -

HARWELL(Q) rfrlof{of{1{o{ 0.0 - -

MICD(10™%) oli1]olol1]o] 102 - -

MICD(0) 0 1 0 0 1 0 0.0 - -
RBIC(0) cjojofl1to] o0 ~ EUSE3 | FILL1
MIC(0) ojojoflot1lo ~ - FILL]

Table C2

Ly

"6 o T bl i
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Point Red/Black Ordering (NTYPE = 2)

OPTION vector Functious
Preconditioning
Strategy 11 2] 3)4]5) 6 C EUSE FILL
"
DS ojoloj1]lolo - EUSEL | FILLI
I¢(0) ojJojojo]lolo - - FILLL
HaRvELL(10™2) | 1| 1] ol o]l 1] ol 02| - -
HARWELL(0) 1y1jo0]0]1)o0} 0.0 - ~
MICD(1072) ol1}lolo}i1] ol 102 - -
MICD(O) otljJojoflt1t}of 0.0 - -
RBIC(0) ojojlo}j1jo]o - EUSE4 | FILL1 j
MIC(0) ojojJojo}l1fo - - FILL1

Table C3

i

MAMIES Xy 1h % 5
P Ry
R tanaiR IR SEDEE U U S WL

——— g mmme—

L A
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2 Line Red/Black Ordering (NTYPE = 3)

OPTION vector Functions
Precondtitioning
Strategy 1 2V 31 4151 6 c EUSE FILL ’
BDS oi{olo}ltir}lo]o - EUSE2 | FILLI F
1C(0) olojolo]lo]o - - FILL1
MIC(0) oclojoloj1L]oO - - FILL]
HARWELL(10™2) | 1)1 ]ol o] 1)o] 10?] - -
HARWELL(0) 1jy1jo0}lof1}o} o.0 - -
MICD(10™2) ol1]loflol1]o] 02| - -
MICD(O) oJ1]ojo]1]o} 0.0 - -
RBIC(0) ojojJojlr}jo]o - EUSES | FILLI
‘RBIC(3) o]Jojo L rjo]o - EUSE5 | FILL3 ]

Table C4
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Definitions for parameters used in Tables Cl -~ C4.

OPTION(1) = 0 - Natural order factorization
1 - Minimum degree factorization
OPTION(2) = 0 - Function FILL used to control fill~ins
1 - Drop tolerance C used to control fill~ins
OPTION(3) = 0 - No diagonal scaling prior to factorization
1 - Diagonal elements scaled by 1+ABS(C)/N
prior to factorization
OPTION(4) = 0 - All matrix elements used in calculating
the incomplete factorization
1 - Function EUSE determines which matrix
elements to use in calculating the
incomplete factorization
OPTION(5) = 0 - No diagonal modification
1 - Diagonal modification performed
OPTION(6) = 0 - Calculate the desired preconditioning matrix
1 - Bypass calculating the preconditioining matrix
C - Drop tolerance used when OPTION(2) is in affect
EUSE - Function used to determine which elements of matrix A
are to be used in calculating the incomplete
factorization
FILL -~ Function used to determine which fill-ins to keep

during the incomplete factorization

R
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Appendix D

Definition of test problems.
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Test Problem 1

Laplace Equation

over the unit square with Dirichlet boundary conditions:

(0,1) u=] (1)1)
Ax
u=1 u=]
Ay
(0,0) u=1 (1,0)
Phase I
n=8 =8

Matrix A of order 64
Phase III
n=32 w32

Matrix A of order 1024

= 1/(n+l)

= 1/(n+1)

Matrix A will be a positive definite M-matrix.
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Test Problem 2

Laplace Equation

du
on =0
0,1) (1,1)
du du _
an 0 an 0
(0,0) u=1 (1,0)
Ax = 1/31 Ay = 1/31
n=32 m=31

Matrix A is of order 992

Matrix A will be a positive definite M-matrix.

ha
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Test Problem 3

_08,..2 2 d .\ _ D, xyd -
5;((x +y° + 1)3;u) ay(e 3?“) +u = £f(x,y)

2 2 4 22

+ 4x°y + 2xy" + 6x2y + 2y3

x2 4 4 3
f(x,y) = e* V(1 - (4x'y +2y) - (x' + x)eV)

over the unit square with boundary conditions

= ,1) @3) (1,1) .

IR

e 2

*

(2) (4)

(0,0) (1) (1,0)

1) u=1

du
(2) 2n =0

e Pl A S i

2
3) u +-%% = " (1 + x?)

du _ y
(4 ) 2*6; Aye
with Ax = 1/31 Ay = 1/31 *

n=32 m=31

Matrix A is of order 992

Matrix A will be positive definite, but not an M-matrix.
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Appendix E

Cost of Conjugate Gradient Algorithm

Outlines the number of arithmetic operations and data transfers required
by each step of our preconditioned conjugate gradient algorithm if
implemented on our wmultiprocessor. I assume that the system of
equations being solved is of order nm, where n is even, and that our

multiprocessor consists of n/2 processors as arranged in figure 1.1.
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Arithmetic Interprocessor
Operations Data Transfers

Preprocessing
factorization * *
CG Algorithm
Xy = C-lb * *
r = Ax0 -b 22m-8 2m
(rTr)l/2 4%111 m/2
g8 = C- r * *
e = -g 0 0
T 1
60 rg 4§m m/2
Each CG Iteration
f = Ae 20m-8 2m
T 1
A= 60/e f &im m/2
X = X + Ae 4m 0
r=1r+ Af 4m 0
(r'rr)llz a%m a/2
g = c'lr * *
T 1
61 = rg &Em m/2
B = 61/60 1 0
60 = 61 0 0
e = -g + Be 4m 0

Table El - Cost breakdown of each step of a preconditioned conjugate
gradient algorithm as implemented on our multiprocessor.
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Preconditioning Factorization g = C-lr
Method Arith. Ops. Comm. Arith. Ops. Comm
BDS 6m 0 10m 0
1c(0) 13m 0 18m 2m
RBIC(0) 9m 0 l4m 0

Table E2 - Cost breakdown of the preconditioning method dependent items
from Table El for the preconditioning methods considered during

Phase III.
Preconditioning Preprocessing 1 CG iteration
Method Arith. Ops. Comm. Arith. Ops. Comm.
None 31a 3m AS%m 3%m
BDS 57m 3m SS%m 3%m
1¢(0) 80m Tm 633n St
RBIC(0) 68m 3m 595m Ho

Table E3 -~ Qutlines the costs associated with the preprocessing stage
and each CG 1iteration for the preconditioning strategies considered
during Phase III if implemented on our multiprocessor,

.
L}
5
X
1

i ! - v
A o - R Bt R ]
o ‘ = ° =&
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Appendix F
Program Listings
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Hierarchy Phase I Software

;" PROG1 PROG2
: . GENA . GENA
r . . NORDER . . NORDER
' . . ISTORE . . ISTORE
4 * *
: . . MAJIE . . MA3IE
. FACTOR . FACTOR
. . EUSE . . . EUSE
. . MA3IC . . MA3lC
. . . M3 . . . Ma3D
. . . FILL . . . FILL
. SOLVE . GETEIG
. . MAIIF . . EAL4AD
.. . MAG . . MA3IG2
. . . MA3IH . . MA3M
. . MA3lGl

*
« + DSCRPT

*
. .+ DSCRP2




- 9
% : Heirarchy Phase III Software
. ,

PROG1A/B/C/D PROG2A/B/C/D

. GENA . GENA

. .« NORDER . .« NORDER

. .+ ISTORE . . ISTORE

. . MA31E" . . MASIE"

. ICCGO/BDIAG/RBICO . ICCGO/BDIAG/RBICO

. SOLVE . GETEG2

. .« MA3IF . . EAL4AD"

. . MAZIG . . MA31G2

. o+ MA3IH « .« MA3IH

.« MA31Gl

*
Program listings for these routines are not included.

They maybe found in the following locations:

MA31D, MA31E and MA31G ~ Cyber Harwell library as part of the

MA31A package.
EAl4AD - Cyber Harwell library

'

|
DSCRPT and DSCRP2 - Cyber MSL library i
i

—— e ——————————— i
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PROGRAM PROGL(INPUY,OUTPUT,MESS,TAPE4=INPUT,TAPE5=MESS,

*TAPE6=0UTPUT)

SOLVE THE LINEAR SYSTEM OF EQUATIONS ARISING FROM
THE DISCRETIZATION FOR OUR MODEL PROBLEM USING A
PRECONDITIONED CONJUGATE GRADIENT ALGORITHM.

SUBROUTINE GENA

PERFORMS THE DISCRETIZATION OF THE CURRENT PROBLEM.
THE USER SPECIFIED INPUT PARAMETER NTYPE DETERMINES
THE TYPE OF GRID POINT ORDERING SCHEME TO BE USED:
NTYPE = 0 - NATURAL
1 = LINE RED/BLACK
2 = POINT RED/BLACK
3 -~ 2 LINE RED/BLACK

SUBROUTINE FACTOR

CALCULATES THE PRECONDITIONING MATRIX BY INCOMPLETE
FACTORIZATION. THE TYPE OF INCOMPLETE FACTORIZATION
BY THE USER SPECIFIED OPTION VECTOR:

DONE IS DETERMINED
OPTION(1) = O

OPTION(2) = é
1
OPTION(3) = O
1
OPTION(4) = O
1
OPTION(5) = O
OPTION(6) = é

SUBROUTINE SOLVE

NATURAL ORDER FACTORIZATION

MINIMUM DEGREE FACTORIZATION

FUNCTION FILL USED TO CONTROL FILL-INS
DROP TOLERANCE C USED TO CONTROL
FILL-INS

NO DIAGONAL SCALING PRIOR TO
FACTORIZTION

DIAGONAL ELEMENTS SCALED BY 14+ABS(C)/N
PRIOR TO FACTORIZATION

ALL MATRIX ELEMENTS USED IN CALCULATING

THE INCOMPLETE FACTORIZATION

FUNCTION EUSE DETERMINES WHICH MATRIX
ELEMENTS TO USE IN CALCULATING

THE INCOMPLETE FACTORIZATION

NO DIAGONAL MODIFICATION

DIAGONAL MODIFICATION PERFORMED
CALCULATE THE DESIRED PRECONDITIONING
MATRIX

BYPASS CALCULATING PRECONDITIONING MATRIX

SOLVES THE LINEAR SYSTEM USING THE HARWELL MA31F

PRECONDITIONED CONJUGATE GRADIENT ALGORITHM.
MITS - MAXIMUN NUMBER OF ITERATIONS ATTEMPTED
EPS - DESIRED ACCRACY OF SOLUTION IN TERM OF
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T

THE NORM OF THE RESIDUAL
50
FOR MORE DETAILS SEE THE INDIVIDUAL SUBROUTINES.

aonon

REAL A(650),B(64),W(64,3),W1(64,3)

INTEGER INI(200),INJ(650),IK(64,4),IW(64,4),0PTION(6)
55 ¢C

COMMON/MA311/DD,LP, MP

COMMON/MA31J/LROW, LCOL, NCP,ND, IPD

COMMON/MA3 1K/NURL, NUCL, NUAL

COMMON /MCOMM3 /OPTION
60 COMMON/MA3 1L/EPSTOL,U

COMMON /MA3 IM/NI,NJ,NVERSN, NTYPE

COMMON/MA3 IN/MITS,EPS1

i EXTERNAL FILL,EUSE
65 C
DATA DD,LP,MP/1.0,6,5/
DATA EPSTOL,U/2.0E-6,1.0E2/
DATA NI,NJ/8,8/
j DATA IAI,IAJ,NN/200,650,64/
! 70 DATA MITS,EPS1/50,1.0E~6/

{ ND=NN
READ(4,*) NTYPE,NVERSN
75 READ(4,*) (OPTION(I),I=1,6)
READ(4,*) C
CALL GENA(NN,NZ,A,INI,INJ,IAI,IAJ,W,B,IK,IW)
S 80 IF (OPTION(6).EQ.1) GO TO 5

PERFORM THE DESIRED FACTORIZATION

s NNl

CALL FACTOR(NN,NZ,A,INI,INJ,IAI,TAJ,IK,IW,W,C,FILL,EUSE)
85 GO TO 15
5 CONTINUE
c
C NO PRECONDITIONING REQUESTED
C GENERATE IDENTITY MATRIX
90 C

LT Ty TR oy
—— A i S, .

, LROW=0
j DO 10 I=1,NN
; IR(I,1)=0
IK(I,2)=L
95 W(I,2)=1.0
10  CONTINUE

— | B O~
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15 CONTINUE

c
C PERFORM THE PRECONDITIONED CONJUGATE GRADIENT ITERATION
C
CALL SOLVE(NN,NZ,A,INI,INJ,IAI,IAJ,W,IK,B,Wl)
c
END
SUBROUTINE GENA(NN,NZ,A,INI,INJ,IAI,TIAJ,D,B,IK,IW)
c

Qe Je e do Jede e e de e de e e o e e e e o de e e o do e e ek e ke ke de dokokok ke kok ke k ke ek k

GENAl

PERFORMS THE DISCRETIZATION OF THE LAPLACE EQUATION
OVER THE UNIT SQUARE WITH DIRICHLET BOUNDARY CONDITIONS
USING A NI X NJ GRID.

IDENTIFIED AS PROBLEM ! IN TEXT.

QOONOO0OO000

de e Je e o o Jo de Jo Je e Je e o do e dedode T e do Jo e do ok K Ko e de e e dedede e e K o e ke e e ke k dedede ke e dedk

INPUT PARAMETERS

NN - ORDER OF MATRIX A
TIAI - SIZE OF ARRAY INI
IAJ - SIZE OF ARRAYS INJ AND A

OUTPUT PARAMETERS

NZ - NUMBER OF NON-ZERO ELEMENTS IN THE UPPER
TRIANGULAR PORTION OF MATRIX A
A - ARRAY CONTAINING THE NON-ZERO ELEMENTS IN
THE UPPER TRIANGULAR PORTION OF MATRIX A
IN ROW ORDER
INI/INJ - ARRAYS CONTAINING THE ROW/COLUMN
INDICES OF THE CORRESPONDING ENTRY
IN ARRAY A (IE. INI(I) AND INJ(I)
CONTAIN THE ROW AND COLUMN INDEX
FOR THE ENTRY IN A(I) )
D - ARRAY CONTAINING THE DIAGONAL ELEMENTS OF
MATRIX A
B - CONTAINS THE RESULTING RIGHTHAND SIDE

OO0 O00000000000000000




100

IK(I,1) - NUMBER OF ELEMENTS IN ARRAY A BELONGING
TO ROW I
IK(J,2) - NUMBER OF ELEMENTS IN ARRAY A BELONGING
TO COLUMN J
IW(I) -~ POINTS TO THE FIRST ELEMENT OF ROW I IN
ARRAY A

40

45 COMMCN BLOCK PARAMETERS

LROW,LCOL,NCP, IPD,DD - NOT USED

ND -~ ORDER OF MATRIX A

LP -~ OUTPUT FILE UNIT NUMBER

MP ~ MESSAGE FILE UNIT NUMBER

NI - NUMBER OF GRID POINTS IN THE X DIRECTION

NJ -~ NUMBER OF GRID POINTS IN THE Y DIRECTION

NVERSN - PROBLEM IDENTIFIER

NTYPE ~ DETERMINES GRID POINT ORDERING TO BE
USED. SEE NORDER FOR DETAILS

50

55

OO0 00O0000000000O000000

REAL A(IAJ),B(NN),D{(NN),ATYPE(4)

INTEGER INI(IAI),INJ(IAJ),IK(NN,2),IW(NN)
60 C

COMMON/MA31J/LROW,LCOL,NCP,ND, IPD

COMMON/MA311/DD, LP,MP

COMMON/MA3 IM/NI,NJ,NVERSN,NTYPE

65 DATA ATYPE/THNATURAL,7HLINE RB,8HPOINT RB,8H2LINE RB/
WRITE(MP,2)
2 FORMAT(11H GENA START)
c
C INITIALIZE DATA
70 C

DO 5 I=1,ND
IK(I,1)=0
IK(I,2)=0
IW(I)=0

75 5  CONTINUE

CALL TIME(AT)
CALL DATE(AD) ]
CALL SECOND(TIM1)

—— A e mah .

80 C
NNAT=0
NZ=0

C PROCESS GRID POINTS IN NATURAL ORDER
85 C PERFORMING THE DISCRETIZATION




101

DO 100 J=1,NJ
DO 90 I=1,NI
NNAT=NNAT+1
90 N=NORDER(NTYPE, I, J,NNAT)
D(N)=4.0
B(N)=0.0
IF ((1.EQ.1).0R.(TI.EQ.NI)) B(N)=B(N)+!1.0
IF ((J.EQ.1).0R.(J.EQ.NJ)) B(N)=B(N)+1.0
95 ¢
IF (I1.EQ.NI) GO TO 50
NZ=NZ+1
A(NZ)=-1.0
NT=NORDER(NTYPE,I+1,J,NNAT+1)
100 CALL ISTORE(N,NT,INI,INJ,IAI,IK,ND,NZ)

50 CONTINUE
IF (J.EQ.NJ) GO TO 90
NZ=NZ+1
105 A(NZ)=-1.0
NT=NORDER(NTYPE,I,J+1,NNAT+NI)
CALL ISTORE(N,NT,INI,INJ,IAI,IK,ND,NZ)
c
90  CONTINUE
110 100 CONTINUE

INITIALIZE IW(I) TO POINT JUST BEYOND WHERE THE
LAST COMPONENT OF ROW I WILL BE STORED

aAaoOoaOon

115 KI=1
DO 200 I=1,ND
KI=KI+IK(I,1)
200 IW(I)=KI

120 C REORDER BY ROWS USING IN-PLACE SORT ALGORITHM
c
CALL MA31E(INI,INJ,NZ,IW,ND,A)

REINITIALIZE IW(I) TO POINT TO THE BEGINNING OF ROW I

aonoon

125
KK=1
DO 210 IR=1,ND
IW(IR)=KK
210 KRK=KK+IK(IR,1)
130 DO 220 I=},NZ
220 INI(I)=IABS(INI(I))

CALL SECOND(TIM2)




102

TIMD=TIM2-TIMI1
135 ¢
C OUTPUT STATISTICS
c
WRITE(LP,250) TIMD
250 FORMAT(13H GENA TIME = ,F6.3,4H SEC)
140 WRITE(LP,260) NVERSN
260 FORMAT(11H VERSION = ,I2)
WRITE(LP,265) ATYPE(NTYPE+])
. 265 FORMAT(14H MATRIX A HAS ,Al0,9H ORDERING)
: WRITE(LP,270) AD, AT
145 270 FORMAT(18H DATE GENERATED = ,Al0,Al0)
WRITE(LP,280) ND,NZ
280 FORMAT(6H ND = ,I4,6H NZ = ,I4)
;. WRITE(MP, 290)
%, - 290 FORMAT(9H GENA END)
3 150 ¢

RETURN
END
SUBROUTINE ISTORE(N,NJ,INI,INJ,IAI,IK,NP,NZ)

155 INTEGER INI(IAI),INJ(IAY),IK(NP,2)

SUBROUTINE USED TO UPDATE ROW AND COLUMN COUNTS

a0

IF (N.GT.NJ} GO TO 10

160 INI(NZ)=N
IK(N,1)=IK(N,1)+1
INJ(NZ)=NJ
IK(NJ,2)=IK(NJ, 2)+1
GO TO 20

165 10  INI(NZ)=NJ
IK(NJ, 1)=IK(NJ, 1)+1
INJ(NZ)=N
IK(N,2)=IK(N,2)+1

20  CONTINUE

170 RETURN

END

FUNCTION NORDER(NTYPE,I,J,N)

SUBROUTINE TO PERMUTE AN ELEMENT FROM NATURAL ORDERING TO
ONE OF THE OTHER ORDERING SCHEMES

ancaaaon

NTYPE = 0 NATURAL ORDERING
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= 1 LINE RED/BLACK ORDERING
= 2 POINT RED/BLACK ORDERING
= 3 2 LINE RED/BLACK ORDERING

INTEGER PTRB,OFFST(4)

COMMON /MA3 1M/NI,NJ,NVERSN,NTYP

DATA OFFST/32,512,496,496/

DATA NATURL,LINRB,PTRB,L2RB/0,1,2,3/
NTEMP=N

IF (NTYPE.EQ.NATURL) GO TO 100

IMOD=MOD(I+1,2)
JMOD=MOD(J+1,2)

C DETERMINE IF LINE RED-BLACK ORDERING REQUESTED

c

15

c

20

IF (NTYPE.NE.LINRB) GO TO 20
NTEMP=J+( (I-1)/2)*NJ

IF (IMOD.EQ.0) GO TO 15
NTEMP=NTEMP+OFFST (NVERSN+1)
CONTINUE

GO TO 100

CONTINUE

C DETERMINE IF POINT RED-BLACK ORDERING REQUESTED

c

c

C DETERMINE IF TWO LINE RED~BLACK ORDERING REQUESTED

c

25

30

100

IF (NTYPE.NE.PTRB) GO TO 30
NTEMP=(N+1)/2

IF (IMOD.EQ.JMOD) GO TO 25
NTEMP=NTEMP+OFFST (NVERSN+1)
CONTINUE

GO TO 100

CONTINUE

NTEMP=J+IMOD*NJ+( (I~1) /4 ) *NJ*2
NIMOD=MOD( (I+1)/2,2)

IF (WIMOD.EQ.1) GO TO 100
NTEMP=NTEMP+OFFST(NVERSN+1)

CONTINUE
NORDER=NTEMP
RETURN

END
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SUBROUTINE FACTOR(NN,NZA,A,INTI,INJ,IAI,IAJ,IK,IW,
*W,C,FILL,EUSE)

SUBROUTINE TO CALCULATE THE PRECONDITIONING MATRIX
USING THE MODIFIED HARWELL ROUTINE MA31C. THIS
SUBROUTINE PERFORMS THE SAME FUNCTIONS AS THE

HARWELL ROUTINE MA31A. SEE DESCRIPTION OF THE HARWELL
MA31 PACKAGE FOR MORE DETAILS.

OO OOOONn

10 REAL A(IAJ),W(NN,3)
INTEGER IK(NN,4),IW(NN,4),INI(IAT),INJ(IAJ),OPTION(S)
LOGICAL FILL,EUSE

COMMON/MA311/DD,LP, Mp

15 COMMON/MA31J/LROW,LCOL,NCP,ND, IPD
COMMON/MA3 1K/NURL, NUCL,NUAL

- COMMON /MCOMM3 /OPTION

: COMMON/MA3 1M/NI,NJ,NVERSN,NTYPE

20 CALL SECOND(TIM1)

NZ=NZA
! NZP1=NZA+1
IAJ1=IAJ-NZA
25
SAVE ROW INDEX FILE IK(K,1)

OO0

DO 5 K=1,NN
5  IK(K,4)=TK(K,1)
30

Q

IF (OPTION(4).EQ.0) GO TO 18

c

C ELIMINATE THOSE ELEMENTS NOT TO BE USED IN THE

C INCOMPLETE FACTORIZATION AS DETERMINED BY THE
35 C FUNCTION EUSE.

NZ1=NZ+1
KK=NZ
DO 12 K=1,NZ
40 I=INI(K)
J=INJ(K)
IF (EUSE(I,J)) GO TO 10
IK(T,1)=IK(I,1)-1
IK(J,2)=IK(J,2)-1
45 GO TO 12
10 CONTINUE
KK=KK+1
A(KRK)=A(K)

el A e el

Lo -- i e
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INJ(KK)=J
12 CONTINUE
c
C REBUILD THE START OF ROW I FILE IW(I,l)
C
KI=NZ1
DO 14 K=1,ND
KI=KI+IK(K,1)
14  CONTINUE
c
NZ=KK-NZA
CALL SECOND(TIM2)
c
IF (NZ.NE.0) GO TO 18
c
C SPECIAL CASE OF DIAGONAL SCALING
c
DO 15 I=1,ND
W(I,2)=W(1,1)
IK(I,2)=1
15 CONTINUE
LROW=0
LCOL=0
IFLAG=0
GO TO 45
c

C CONSTRUCT COLUMN FILE IW(I,2) TO POINT JUST BEYOND WHERE THE
C LAST COMPONENT OF COLUMN I WILL BE STORED

c
18 KJ=IAI-NZ+1
DO 20 I=1,ND
KJ=KJ+IK(I,2)
IW(I,2)=KJ
20 CONTINUE
C

C CONSTRUCT COLUMN FILE IN HIGH ORDER PART OF INI

c
DO 30 IR=1,ND
KPP=IW(IR,1)
KLL=KPP+IK(IR,1)-1
IF (KPP.GT.KLL) GO TO 30
DO 25 K=KPP,KLL
J=INJ(K)
KR=IW(J,2)-1
IW(J,2)=KR
INI(KR)=IR

25  CONTINUE
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30 CONTINUE

TRANSFER INPUT MATRIX TO TAIL END OF ARRAY A
AND MODIFY INJ TO REFLECT THE MOVE

OO0

NUAL=IAJ+1
DO 40 II=1,ND
I=ND-IT+1
w(L,2)=w(1,1)
RP=IW(I,1)
KL=KP+IK(I,1)~1
IF (KP.GT.KL) GO TO 38
DO 35 KK=KP,KL
K=KP+KL-KK
NUAL=NUAL-1
A(NUAL)=A(K)
INJ(NUAL)=INJ(K)

35  CONTINUE

38  IW(I,1)=NUAL-NZA

40  CONTINUE

c
C INITIALIZE COMMON MA31J AND MA31K VARIABLES
c
LCOL=NZ
LROW=NZ
NURL=0
NUCL=IW(1,2)
NUAL=NUAL-NZA
IFLAG=0
NCP=0
c
CALL SECOND(TIM2)
c
C PERFORM THE FACTORIZATION
C
CALL MA31C(ND,NZ,W(1,2),A(NZP1),INI,INJ(NZP1),
1IAI,IAJ1,IK,IW,IW(1,3),W(1,3),IFLAG,C)
C
45 CALL SECOND(TIM3)
c
C RESTORE INI
c
KP=1
DO 56 I=1,ND

KL=KP+IK(I,4)-1
IF (KP.GT.KL) GO TO 56
DO 55 K=KP,KL
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INI(K)=I
KP=KL+1

C OUTPUT STATISTICS ON THE FACTORIZATION

C

OO0 00

58
60

65

WRITE(LP,58)

FORMAT(25HORESULTS OF FACTORIZATION)
WRITE(LP,60) (OPTION(I),I=1,6),C
FORMAT(1HO,9HOPTION = 6I1,2X,4HC = ,F9.5)
WRITE(LP,65) IFLAG

FORMAT(9H IFLAG = ,I3)

TPD - TIME REQUIRED TO PREPARE DATA ARRAYS

PRIOR TO CALLING MA31C.

TD - TIME REQUIRED BY MA31C TO PERFORM THE

FACTORIZATION.

TDT - TOTAL TIME REQUIRED BY SUBROUTINE FACTOR.

70

85
90

100

150 |

TDT=TIM3-TIMI
TPD=TIM2-TIM1
TD=TIM3-TIM2

WRITE(LP,70) TDT,TPD,TD
FORMAT(7H TDT = ,F6.3,7H TPD = ,F6.3,6H TD = ,F6.3)

WRITE(LP,85) NTYPE,NVERN

FORMAT(9H NTYPE = ,12,2X,l10HVERSION = ,12)
WRITE(LP,90) LROW

FORMAT (21HONUM ELEMENTS IN L = ,I4)
WRITE(LP,100) ND,NZA

FORMAT(6H ND = ,I3,7H NZA = ,I4)

CONTINUE
RETURN
END
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LOGICAL FUNCTION EUSE(I.J)

EUSE1

ELIMINATES ALL OFF-DIAGONAL ELEMENTS.
USED FOR DIAGONAL SCALING

EUSE=.FALSE.
RETURN
END

LOGICAL FUNCTION EUSE(I,J)

USED DURING BLOCK DIAGONAL SCALING (BDS).
KEEPS ONLY THOSE ELEMENTS IN THE TRI-DIAGONAL
PORTION OF THE MATRIX A.

EUSE=.FALSE.

IF {LABS(J-I).LE.l) EUSE=.TRUE.
RETURN

END

LOGICAL FUNCTION EUSE(I,J)

EUSE3

USED TO GENERATE THE LINE RED/BLACK REDUCED BLOCK FORMAT

EUSE=.FALSE.

ID=IABS (J-1)

IF ((ID.LE.1).OR.(ID.EQ.32)) EUSE=.TRUE.
RETURN

END
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LOGICAL FUNCTION EUSE(I,J)

EUSE4

USED TO GENERATE THE POINT RED/BLACK
REDUCED BLOCK MATRIX.

w
OO0O0OO00

EUSE=. FALSE.
10 MI=(I-1/8)+1
MI=((J~1)/8)+1
- MD=TABS (MJ-MI)
IF (MD.EQ.4) EUSE=.TRUE.
RETURN
; 15 END

R

: LOGICAL FUNCTION EUSE(I,J)

USED TO GENERATE THE 2 LINE RED/BLACK REDUCED BLOCK FORMAT

PTG
wn

aoO00O00a0n
[}
G
[%2]
324
w

p EUSE=.FALSE.

IF (IABS(J-I).LE.8) EUSE=.TRUE.
10 RETURN

END

SUBROUTINE MA31C(N,NZ,D,A,INI,INJ,IAI,IAJ,IK,
11P,IW,W,IFLAG,C)

MA3IC IS PART OF THE HARWELL MA31 PACKAGE.

SEE ROUTINE MA31A FOR DETAILS.

MODIFIED TO CALCULATE A WIDER VARIETY OF INCOMPLETE
CHOLESKY FACTORIZATIONS.

OO0 00

EXTERNAL FILL
10 REAL A(IAJ),W(N),D(N)
: INTEGER IP(N,2),0PTION(6)
- LOGICAL CHANGE,FILL
INTEGER IK(N,3),IW(N,2),INI(IAI),INJ(IAT)
COMMON/MA311/DD,LP,MP
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COMMON/MA31J /LROW, LCOL,NCP,ND, IPD
COMMON/MA3 1K/NURL, NUCL, NUAL

COMMON /MCOMM3 /OPTION
COMMON/MA31L/EPSTOL,U
OPTION DETERMINES HOW THE FACTORIZATION WILL BE DONE
OPTION(1) = 0 - NATURAL ORDER FACTORIZATION
= ] - MINIMUM DEGREE FACTORIZATION
OPTION(2) = 0 - FUNCTION FILL USED TO CONTROL FILL-INS
= 1 - DROP TOLERANCE C USED TO CONTROL FILL-INS
OPTION(3) = 0 - NO DIAGONAL SCALING USED
= ] - DIAGONAL ELEMENTS SCALED BY
1+ABS(C)/FLOAT(N)
OPTION(4) - NOT USED HERE
OPTION(5) = - DIAGONAL MODIFICATION NOT CONSIDERED
= ] - DIAGONAL MODIFICATION CORRESPONDING
TO THE DROPPED FILL-INS IS PERFORMED
OPTION(6) - NOT USED HERE

1P(1,1),IP(I,2) POINT TO THE START OF ROW/COLUMN I.

IK(I,1),IK(I,2) HOLD THE NUMBER OF NONZEROES IN ROW/COLUMN I

OF THE LOWER TRIANGULAR PART OF A.

DURING THE MAIN BODY OF THIS SUBROUTINE THE VECTORS
IK(*,3),IW(*,1) AND IW(*,2) ARE USED TO HOLD DOUBLY
LINKED LISTS OF ROWS THAT HAVE NCT BEEN PIVOTAL AND
HAVE EQUAL NUMBER OF NONZEROES.

IK(I,3) HOLD FIRST ROW/COLUMN TO HAVE I NONZEROS OR
ZERO IF THERE ARE NONE.

IW(I,1) HOLD ROW/COLUMN NUMBER OF ROW/COLUMN PRIOR TO
ROW I IN ITS LIST OR ZERO IF NONE.

IW(I,2) HOLD ROW/COLUMN NUMBER OF ROW/COLUMN AFTER

ROW I IN ITS LIST OR ZERO IF NONE.

DURING THE MAIN BODY OF THE SUBROUTINE INI AND INJ
KEEP A COLUMN FILE AND A ROW FILE CONTAINING
RESPECTIVELY THE ROW NUMBERS OF THE NONZEROS OF
EACH COLUMN AND THE COLUMN NUMBERS OF THE NONZEROS

OF EACH ROW.

THE IP ARRAYS POINT TO THE START

POSITION IN INI AND INJ OF EACH COLUMN AND ROW.

DATA ZERO,ONE,CMAX/0.0.1.0,1.0E20/

INITIALIZE IK(*,3) AND LOCAL VARIABLES.
CHANGE=.TRUE.
IF (C.LE.ZERO) CHANGE=.FALSE.

NZO=NZ
IPD=N

ALFA-1.0/0-90

Bl=--03

s L W ey <y
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BZ- .03
NFILL=IAJ-NZO-N
MCL=LCOL
CO=0
IF (OPTION(3).NE.O) CO=ABS{C)/FLOAT(N)
C=Ck*2
DO 5 I=1,N
D(I)=(14+CO)*D(I)
5 IK(I,3)=0

SET UP LINKED LISTS OF ROWS/COLUMNS WITH EQUAL NUMBER
OF NON-ZEROS.

e NeNeNel

IF (OPTION(1).NE.O) GO TO 9
DO 8 I=1,N
IW(I,1)=I-1
IW(T,2)=I+1
8 CONTINUE
IW(N,2)=0
IK(1,3)=1
G0 TO 15

9 CONTINUE
DO 10 I=1,N
NZT=IK(I,1)+IK(I,2)+1
IN= IK(NZI,3)
IK(NZ2I,3)=I
IW(I,2)=IN
IW(L,1)=0
10 IF (IN.NE.Q) IW(IN,l)=I
15 CONTINUE
C
C START THE ELIMINATION LOOP
DO 180 IIP=],N
c
C SEARCH ROWS WITH NRJP NONZEROS.
DO 20 NRJP=1,N
JP=IK(NRJP,3)
IF{JP.GT.0) GO TO 25
20 CONTINUE
c
C ROW JP IS USED AS PIVOT.
c
C REMOVE ROWS/COLUMNS INVOLVED IN ELIMINATION FROM
c ORDERING VECTORS.
c
25 DO 45 1L=1,2
KPP=IP(JP,L)
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c

27

112

KLL=IK(JP,L)+ KPP-1

IF (KPP.GT.KLL) GO TO 45
DO 40 K=KPP,KLL

IF (L.EQ.2) GO TO 27
J=INJ(K)

GO TO 28

J=INI(K)

IL=IW(J,1)

IN=IW(J,2)

IW(J,2)=-1

IF (OPTION(1).EQ.0) GO TO 40
IF (IN.LT.0) GO TO 40

IF (IL.EQ.0) GO TO 30
IW(IL,2)=IN

GO TO 35

N2=IK(J, 1)+IK(J,2)+1
IK(NZ,3)=IN

35 IF (IN.GT.0) IW(IN,1)=IL

40
45

CONTINUE
CONTINUE

C REMOVE JP FROM ORDERING VECTORS

54

c

55

IL=IW(JP,1)

IN=IW(JP,2)

W(JP,2) =-10

IF (OPTION(1).NE.0) GO TO 54
IK(1l,3)=Jp+1

GO TO 55

CONTINUE

IF (IN.LT.0) GO TO 55
NZ=IK(JP,1)+IK(JP,2)+1
IK(NZ,3)=IN

IF(IN.GT.0) IW(IN,I1)=IL
CONTINUE

C STORE PIVOT.

IW(JP,1)=-IP

C COMPRESS ROW FILE IF NECESSARY.

c

c

IF(LROWHIK(JP, 1 )+IK(JP,2).GT.IAJ-N ) C=CMAX
IF (NURL+IK(JP,1)+IK(JP,2) .LT.NUAL) GO TO 60
CALL MA31D(A,INJ,IAJ,N,IK,IP,.TRUE.)

60 Kp=IP(JP,1)

RL=IK(JP,1)+KP-1
IP(JP,1)=NURL+1
IF (XP.GT.KL) GO TO 90

C REMOVE JP FROM COLUMNS CONTAINED IN THE PIVOT ROW.
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DO 85 K=KP,KL
L 160 J=INJ(K)
by KPC=IP(J,2)
b NZ=IK(J,2)-1
IK(J,2)=NZ
KLC=KPCH+NZ
165 IF (RLC.GT.KPC) GO TO 65
INI(KPC)=0
GO TO 80
65 DO 70 KC=KPC,KLC
IF (JP.EQ.INI(XC)) GO TO 75
170 70 CONTINUE
75 INI(KC)=INI(KLC)
INI(KLC)=0
. 80 LCOL=LCOL-1
i NURL=NURL+1
‘ 175 INJ(NURL)=J
A(NURL)=A(K)
85 INJ(K)=0
c
i C TRANSFORM COLUMN PART OF PIVOT ROW TO THE ROW FILE.
5 180 90 KP2=IP(JP,2)
KL2=IK(JP, 2)+KP2-1 :
' IF (KP2.GT.KL2) GO TO 100 '
: DO 95 K=KP2,KL2
NURL=NURL+1
185 LCOL=LCOL~1
I=INI(K)
KPR=IP(I,!)
KLR=KPR+IK(I,1)-1
DO 92 KR=KPR,KLR
190 IF (JP.EQ.INJ(XR)) GO TO 93
92 CONTINUE
93 INJ(KR)=INJ(KLR)
A(NURL)=A(KR)
A(RKR)=A(KLR)
195 INJ (KLR)=0
IK(I,1)=IR(I,1)-1
INJ (NURL)=I
95 INI(K)=0
100 NZC=IK(JP,1)+IK(JP,2)
200 IK(JP,1)=NZC
IK(JP,2)=0

C UNPACK PIVOT ROW AND CONTROL DIAGONAL VALUE.
KP=IP(JP,1)

205 KL=KP+NZC-1
CO=EPSTOL*U
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IF (KP.GT.KL) GO TO 102
DO 101 K=KP,KL
AA=A(K)
CO=AMAX1(CO,ABS(AA))
J=INJ(K)
W(J)=AA
101 CONTINUE
102 DIP=D(JP)
IF (DJP.GT.CO/U) GO TO 103
IFLAG=2
IF (MP.GT.0) WRITE(MP,250) JP
250 FORMAT(//44H+ WARNING MODIFICATION OF ZERO OR NEGATIVE,
146H DIAGONAL ENTRY HAS BEEN PERFORMED IN LOCATION,I7)
D(JP)=CO
IF (CO.EQ.EPSTOL*U) D(JP)=ONE
103 IF (KP.GT.KL) GO TO 179

PERFORM ROW OPERATIONS.
DO 170 NC=1,NZC
KC=IP(JP,1)+NC-1
IR=INJ(KC)

AL=A(KC) /D(JP)

COMPRESS ROW FILE IF NECESSARY.
IF (LROW+IK(IR,1)+IK(JP,1).GT.IAJ-N) C=CMAX
IF (NURL+IK(IR,1)+IK(JP,1).LT.NUAL) GO TO 105
CALL MA31D(A,INJ,IAJ,N,IK,IP,.TRUE.)

105 KR=IP(IR,1)
KRL=KR+IK(IR,1)-1
IF (KR.GT.KRL) GO TO 120

SCAN THE OTHER ROW AND CHANGE SIGN IN IW FOR EACH COMMON
COLUMN NUMBER.
DO 115 KS=KR,KRL
J=INJ(KS)
IF (IW(J,2).NE.-1) GO TO 115
IW(J,2)=1
A(KS)=A(KS)~AL*W(J)
115 CONTINUE

SCAN PIVOT ROW FOR FILLS.
120 DO 165 KS=KP,KL
J=INJ(KS)

ONLY ENTRIES IN THE UPPER TRIANGULAR PART ARE CONSIDERED.
IF (J.LT.IR) GO TO 165
IF{IW(J,2).EQ.1) GO TO 165
AA=-AL*W(J)
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255 IF(IR.NE.J) GO TO 122
D(IR)=D(IR)+AA
GO TO 165
122 IF (OPTION(2).NE.0) GO TO 123
IF (FILL(IR,J)) GO TO 124
260 IF (OPTION(5).EQ.0) GO TO 165
D(J)=D(J)+AA
D(IR)=D(IR)+AA
GO TO 165
123 IF (AA*AA.GT.C*ABS(D(IR)*D(J))) GO TO 124
265 IF (OPTION(5).EQ.0) GO TO 165
D(J)=D(J)+AA
D(IR)=D({IR)+AA
GO TO 165
124 LROW=LROW+1
270 IK(IR,1)=IK(IR,1)+!
C IF POSSIBLE PLACE THE NEW ELEMENT NEXT TO THE PRESENT ENTRY.
c
c
C TRY IF THERE IS ROOM AT THE END OF THE ENTRY.

275 IF (KR.GT.KRL) GO TO 130
IF (KRL.EQ.IAJ) GO TO 125
IF (INJ(KRL+1).NE.Q) GO TO 125
KRL=XRL+1 !
INJ(KRL)=J
280 A(KRL)=AA
GO TO 133

aQQ

TRY IF THERE IS ROOM AHEAD OF PRESENT ENTRY.
125 IF (KR.NE.NUAL) GO TO 126
285 NUAL=NUAL-1
GO TO 127
126 IF (INJ(KR~1).NE.0) GO TO 128
127 KR=KR-1
IP(IR,1)=KR
290 INJ(KR)=J
A(KR)=AA
GO TO 133

QO

NEW ENTRY HAS TO BE CREATED.
295 128 DO 129 KK=KR,KRL
NUAL=NUAL-1
INJ(NUAL)=INJ (KK)
A(NUAL)=A(KK)
129 INJ(KK)=0
300

e X ?!

ADD THE NEW ELEMENT. il
130 NUAL=NUAL-~1
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INJ(NUAL)=J
A(NUAL)=AA
IP(IR,1)=NUAL
KR=NUAL
KRL=KR+IK(IR,1)-1

a0

CREATE FILL IN COLUMN FILE.
133 NZ=IK(J,2)

K=IP(J,2)

KL1=K+NZ-1

LCOL~LCOL+1

an

IF POSSIBLE PLACE NEW ELEMENT AT THE END OF PRESENT ENTRY.
IF (NZ.EQ.0) GO TO 140
IF (KL1.EQ.IAI) GO TO 137
IF (INI(KL1+1).NE.0) GO TO 137
INI(KL1+1)=IR
GO TO 160

aon

IF POSSIBLE PLACE ELEMENT AHEAD OF PRESENT ENTRY.
137 IF (K.NE.NUCL) GO TO 138
IF (NUCL.EQ.1) GO TO 140
NUCL=NUCL~1
GO TO 139
138 IF (INI(K~1).NE.O) GO TO 140
139 K=K-1
INI(K)=IR
IP(J,2)=K
GO TO 160
c
C NEW ENTRY HAS TO BE CREATED.
140 IF (NZ+1.LT.NUCL) GO TO 145
c
C COMPRESS COLUMN FILE IF THERE IS NOT ROOM FOR NEW ENTRY.
IF (LCOL+NZ+2.GE.IAI) C=CMAX
CALL MA31D(A,INI,IAI,N,IK(1,2),IP(1,2),.FALSE.)
K=IP(J,2)
KL1=K+NZ-1
c
C TRANSFER OLD ENTRY INTO NEW.
145 IF (K.GT.KL1) GO TO 155
DO 150 KK=K,KLl
NUCL=NUCL~1
INI(NUCL)=INI(KK)
150 INI(KK)=0

C ADD THE NEW ELEMENT.
155 NUCL=NUCL~1
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INI(NUCL)=IR
IP(J,2)=NUCL
160 IK(J,2)=NZ+1
165 IW(J,2)=-1
170 CONTINUE
c
C UPDATE ORDERING ARRAYS.
DO 172 K=KP,KL
J=INJ(K)
W(J)=0.
A(R)=A(K) /D(JIP)
IF (OPTION(1).EQ.0) GO TO 171
NZ=IK(J,1)+IK(J,2)+1
IN=IK(NZ,3)
IW(J,2)=IN
IW(J,1)=0
IR(NZ,3)=J
IF (IN.NE.O) IW(IN,1)=J
GO TO 172
171 IW(J,2)=J+1
IW(J,1)=J-1
172 CONTINUE
IF (OPTION(1).EQ.0) IW(N,2)=0
MCL=MAX0 (MCL,LCOL)
PIVT=FLOAT(IIP) /FLOAT(N)
c
C GIVE WARNING IF AVAILABLE SPACE IS USED TOO EARLY,
IF (C.NE.CMAX) GO TO 175
IF (IPD.LT.IIP) GO TO 179

IPD=IIP

IF (PIVT .GT. .9) GO TO 179
IFLAG=4

IF (MP.GT.0) WRITE(MP,260) IIP
GO TO 179

260 FORMAT(//44H+WARNING AVAILABLE SPACE USED AT PIVOT STEP,17)
c
C CHANGE C IF NECESSARY.
175 IF (.NOT. CHANGE) GO TO 179
PFILL=FLOAT(LROW-NZO) /FLOAT(NFILL)
IF (PIVT.GT.0.9) GO TO 179
IF (PFILL.LT.ALFA*PIVT+Bl) GO TO 176
IF (PFILL.LT.ALFA*P1VT+B2) GO TO 179
C=2.25*C
176 ALFA=(1.0-PFILL)/(0.9-PIVT)
Bl=PFILL-PIVT*ALFA-Q.03
B2=B1+0.06
c
C 1IF THE MATRIX IS FULL THEN STOP THE SPARSE ANALYZE.
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NR=N-I1P

LFULL=NR*(NR-1)/2

LFULDD=IFIX(DD*FLOAT(LFULL))

IF (LCOL.GE.LFULDD.AND.NURIALFULL.LT.IAJ) GO TO 185
CONTINUE

ELIMINATION LOOP TERMINATES
AFTER DEVIATION WE FACTORIZE THE REMAINING FULL MATRIX.

185

IPD=IIP

C=SQRT(C)

LCOL=MCL

IF (.NOT. CHANGE) C=~C

THE ORDER OF THE FULL MATRIX IS NR.
LOOP THROUGH ROWS IN THE ACTIVE MATRIX AND STORE
ROW NUMBERS IN INI.

194
195

196
197

KK=0

DO 197 I=1,NR
JP=1K(I,3)

IF (JP)196,196,195
KK=KK+1

INI(KK)=JP

JP=IW(JP,2)

GO TO 194

IF (KK.EQ.NR) GO TO 198
CONTINUE

MAKE A SORT OF ROWNUMBERS IN INI.

198

199
200

201

IF (NR.EQ.1) GO TO 200
NRM1=NR-1

DO 199 I=1,NRM1

J1=I+1

DO 199 J=J1,NR

IF (INI(J).GT.INI(I)) GO TO 199
JJ=INI(I)
INI(I)=INI(J)
INI(J)=1J

CONTINUE

DO 201 I=1,NR
TI=INI(I)
IW(ITI,1)=~(IPD+I)

MAKE AN ORDERED LIST OF THE PIVOTS.

202

DO 202 I=[,N
IR~-IW(I,1)
IK(IR,2)=I
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450

455

460

465

470

475

480

485

490

C MOVE FULL MATRIX TO THE FRONT AND ORDER.

c
C

c
c

c

C MOVE ROWS AND COLUMN INDICES INTO PIVOTAL ORDER.

Qo

c
C
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IPDP1=IPD+1

NM1=N~1

IF (IPDP1.GT.NML) GO TO 245
DO 215 IIP=IPDP1,NM1
JP=IK(IIP,2)

KP=IP(JP,1)
KL=KP+IK(JP,1)-1

MOVE ROW JP TO W.
IF (KP.GT.KL) GO TO 204
DO 203 K=KP,KL
J=INJ(K)
INJ(K)=0
203 W(J)=A(K)

COMPRESS FILE IF NECESSARY.
204 IF(NURL+N-IIP.LT.NUAL) GO TO 205
CALL MA31D(A,INJ,IAJ,N,IK,IP,.TRUE.)
205 IP(JP,1)=NURL+1
IK(JP,1)=N-IIP

IIPPl=IIP+1
DO 210 I=IIPPI,N
J=IK(I1,2)
NURL=NURL+1
A(NURL)=W(J)
INJ(NURL)=J

210 W(J)=ZERO

215 CONTINUE
LROW=NURL

FACTORIZE THE FULL MATRIX.
DO 240 IIP=IPDP1,NM!l
JP=IK(IIP,2)
KPI=IP(JP,1)

IP1=IIP+]
IF (IP1.EQ.N) GO TO 235

LOOP THROUGH THE OTHER ROW
DO 230 J=IP1,NM1
JI=IK(J,2)

KPJ=IP(JJ,1)
KLJ=KPJ+IKR(JJT, 1)=1
AL=A(KPT)/D(JP)
D(JJ)=D(JJ)-AL*A(KPI)
KK=KPT+1

|
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500

505

510

10

10
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DO 220 K=KPJ,KLJ
A(K)=A(K)=-AL*A(KK)
220 KK=KK+1
c
C STORE FACTOR. AND PROCEED TO NEXT ROW.
A(KPI)=AL
KPI=KPI+1
230 CONTINUE
c
C MODIFY LAST DIAGONAL ENTRY
235 JJ=IK(N,2)
AL=A(KP1) /D(JP)
D(JJ)=D(JJ)-AL*A(KPI)
A(RPI)=AL
240 CONTINUE
245 CONTINUE
RETURN
END

LOGICAL FUNCTION FILL(I,J)

C
C FILLL
C —m—me
c
C USED WHEN NO FILL-INS ARE TO BE KEPT
c
FILL=.FALSE.
RETURN
END
LOGICAL FUNCTION FILL(I,J)
c
C FILL2
(o] e e o
c

C ALLOWS ONE DIAGONAL OF FILL-INS TO BE KEPT
C ADJACENT TO THE OUTER DIAGONAL.

FILL=.FALSE.

IF (IABS(J~I).GE.7) FILL=.TRUE.
RETURN

END

B X VI PR
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LOGICAL FUNCTION FILL(I,J)

FILL3

ALLOWS THREE DIAGONAL OF FILL-INS TQ BE KEPT.
ONE ADJACENT TO THE INNER DIAGONAL AND TWO
ADJACENT TO THE OUTER DIAGONAL.

FILL=.FALSE.

ID=IABS(J-1)

IF ((ID.LE.2),0R.(ID.GE.6)) FILL=.TRUE.
RETURN

END

SUBROUTINE SOLVE(NN,NZ,A,INI,INJ,IAI,IAJ,W,IK,B,Wl)
SUBROUTINE WHICH SOLVES THE LINEAR SYSTEM USING
HARWELL’S PRECONDITIONED CONJUGATE GRADIENT
ROUTINE MA31F.

INPUT PARAMETERS

NN - ORDER OF MATRIX A.
NZ - NUMBER OF NON-ZERO ELEMENTS IN THE UPPER
TRIANGULAT PORTION OF MATRIX A.
A - ARRAY OF LENGTH IAJ CONTAINING THE NON-ZERO
OFF-DIAGONAL ELEMENTS OF THE UPPER TRIANGULAR
PORTION OF MATRIX A IN THE FIRST NZ LOCATIONS
IN ROW ORDER. LOCATIONS NZ+l,...,NZ+LROW
CONTAIN THE NON-ZERO OFF-DIAGONAL ELEMENTS
OF THE UPPER TRIANGULAR PORTION OF THE
PRECONDITIONING MATRIX C IN ROW ORDER.
INJ - ARRAY OF LENGTH IAJ CONTAINING THE COLUMN
INDICES OF THE CORRESPONDING ENTRY IN ARRAY A.
(IE. INJ(K) CONTAINS THE COLUMN INDICE FOR
ENTRY A(K), K=1l,...,NZ+LROW).

INI - ARRAY OF LENGTH NZ CONTAINING THE ROW INDICES
OF THE CORRESPONDING ENTRY IN ARRAY A,
(IE. INI(K) CONTAINS THE ROW INDICE FOR
ENTRY A(K), K=1,...,NZ).

IAJ - SIZE OF ARRAYS INJ AND A.

B - CONTAINS THE RIGHTHAND SIDE OF THE SYSTEM.

W - ARRAY OF LENGTH 3*NN IN WHICH LOCATIONS
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l,¢¢+,NN CONTAIN THE DIAGONAL ELEMENTS OF

MATRIX A AND LOCATIONS NN+1,...,2*NN CONTAIN

THE INVERSE OF THE DIAGONAL ELEMENTS OF MATRIX C.
THE REMAINING NN LOCATIONS ARE WORK SPACE.

35 W1l - ARRAY OF LENGTH 3*NN USED AS WORK SPACE.

OUTPUT PARAMETERS

- 40 B - THE SOLUTION VECTOR

COMMON BLOCK PARAMETERS

45 LCOL,NCP,1PD,DD - NOT USED

LROW - NUMBER OF NON-ZERO ELEMENTS IN UPPER
TRIANGULAR PORTION OF THE PRECONDITIONING
MATRIX C.

ND - ORDER OF MATRIX A AND C.

LP ~ OUTPUT FILE DEVICE NUMBER.

MP - MESSAGE FILE DEVICE NUMBER.

MITS - MAXIMUM NUMBER OF ITERATIONS TO BE ATTEMPTED.

EPS] - DESIRED ACCURACY OF !IR!!

50

55 INTERNAL VARIABLES

NITER ~ ON ENTRY TO MA31F IT CONTAINS THE MAXIMUM
NUMBER OF ITERATION TO BE ATTEMPTED. ON
RETURN FROM MA31F IT CONTAINS THE NUMBER
OF ITERATIONS PERFORMED.

EPS -~ ON ENTRY TO MA31F, EPS(1) CONTAINS THE
DESIRED ACCURACY FOR !!R!!. ON RETURN,
EPS(I) CONTAINS THE VALUE OF !!R!! AFTER
ITERATION I-~1.

OO0 O0000000000O000000000000000

REAL A(IAJ),W(NN,3),W1(NN,3),EPS(150),B(NN)
INTEGER INI(IAI),INJ(IAJ),IK(NN,2)

COMMON/MA3IN/MITS,EPS1
COMMON/MA311/DD,LP,MP
COMMON/MA3 1.J/LROW,LCOL,NCP,ND, IPD

WRITE(MP,5)

5 FORMAT(12H START SOLVE)
IAJ1=TAJ-NZ
NZ1=NZ+1
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110

115

292

295

300
301

305

310
330
335
340

500
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WRITE(LP,292)

FORMAT(3 7HORESULTS OF PRECONDITIONED CG ROUTINE)
IFLAG=0

NITER=MITS

EPS(1)=EPS1

CALL SECOND(STRTIM)

CALL MA31F(ND,NZ,A,W,INI,INJ,IAJ1,A(NZ1),W(1,2),
1INJ(NZ1),IK,B,W(1,3),W1,W1(1,2),W1(1,3),
2NITER,EPS)

CALL SECOND(STPTIM)

NITERI=NITER+1
IF (EPS(NITER1).LE.EPS1) GO TO 300

WRITE(LP,295) NITER

FORMAT(20HO--WARNING MORE THAN,I7,2X,
#,7HITERATIONS REQUIRED TO OBTAIN DESIRED ACCURACY.)
IFLAG=3

WRITE(LP,301) IFLAG
FORMAT(20HOAFTER MA31F IFLAG = ,12)
WRITE(LP,305) NITER,EPS(NITERI)
FORMAT (18HONUM ITERATIONS = ,I3,2X,
*] 9HNORM OF RESIDUAL = ,E13.5)
RTIME=STPTIM-STRTIM

WRITE(LP,310) RTIME

FORMAT(12HORUN TIME = ,F7.3,4H SEC)
WRITE(LP, 330)

FORMAT(38HONORM OF RESIDUAL AFTER EACH ITERATION)
DO 340 I=1,NITER1

WRITE(LP,335) (I-1),EPS(I)
FORMAT(1H ,13,2X,E13.5)

CONTINUE

CONTINUE

RETURN
END

in
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SUBROUTINE MA31F(N,NZ,A,D,INI,INJ,IAF,AF,DF,INJF,IK,B,R,
E,F,G,KMAX,EPS)

MA31F 1S PART OF THE HARWELL MA31 PACKAGE.
IT HAS BEEN MODIFIED TO:

1) HANDLE ADDED PARAMETER TO MA31H CALLING SEQUENCE
2) SAVE THE RESULTING RESIDUAL EACH ITERATION
3) USE A RANDOM STARTING VECTOR.

SEE ROUTINE MA31A FOR DETAILS.

THIS SUBROUTINE PERFORMS THE ITERATIVE PROCEDURE.
THE PRECONDITIONED CONJUGATE GRADIENT METHOD IS USED.

COMPUTE THE INITIAL SOLUTION.

10

COMPUTE THE RESIDUALS AND INSERT THE INITIAL SOLUTION IN B.

20

INITTIALIZE E AND G.

30 DO=DO+R(I)*G(I)

START ITERATION LOOP
35 KITR=KITR+1

REAL AF(IAF),DF(N),A(NZ),B(N),R(N),E(N),F(N),G(N),L,D(N)
REAL EPS(XMAX)

INTEGER INJF(IAF),INI(NZ),INJ(NZ),IK(N,2)

DATA ZER0/0.0/

DO=ZERO
EPSI=EPS(1)*%*2

DO 10 I=1,N
E(I)=RANF(1)*2.0
CALL MA31G(N,AF,INJF,IAF,DF,IK,E)

CALL MA31H(A,D,INI,INJ,NZ,N,E,R)
R1=ZERO

DO 20 I=1,N

R(I)=R(I)~B(I)

RI=RI4+R(T)**2

G(I)=R(I)

B(I)=E(T)

KITR=0

EPS(1)=SQRT(R1)

IF (R1.LT.EPSL) GO TO 75

CALL MA31G(N, AF,INJF,IAF,DF,IK,G)
DO 30 I=1,N
E(L)=~G(I)

CALL MA31H(A,D,INI,INJ,NZ,N,E,F)
L=ZERO
DO 40 I=1,N
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40 LaL+E(I)*F(I)
L=DO/L
c
C AJUST B,G AND R.
R1=ZERO
DO 50 I=1,N
B(I)=B(I)+L*E(I)
R(I)=R(I)+L*F(1)
R1=R1+R(I)*R(T)
50 G(I)=R(I)
EPS(KITR+1)=SQRT(R1)
c
C CONTROL THE RESIDUAL.
IF (R1.LE.EPS! .OR. KITR.GE.(KMAX-1)) GO TO 75
C
C PROCEED ITERATION .
CALL MA31G(N,AP, INJF,IAF,DF,IK,G)
D1=ZERO
DO 60 I=1,N
60 DI1=R(I)*G(I)+D1
BB=D1/D0
DO=D1
po 70 I=1,N
70 E(I)=-G(I)+BB*E(I)
GO TO 35

C TITERATION LOOP TERMINATES.
75 KMAX=KITR
RETURN
END

SUBROUTINE MA31H(A,D,INI,INJ,NZ,N,B,2)

c
C MA31H IS PART OF THE HARWELL MA31 PACKAGE.
c
REAL A(NZ2),D(N),B(N),Z(N)
INTEGER INI(NZ),INJ(NZ)
c
C THIS SUBROUTINE CALCULATES THE INNER PRODUCT OF A MATRIX
C A AND A VECTOR B AND THE RESULT IS RETURNED IN VECTOR Z.
C THE DIAGONAL ENTRIES OF MATRIX A ARE CONTAINED IN D.
c
C INITIALIZE A.
c

D0 10 I=1,N
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15 DO 10 I=[,N
10  2Z(I)=B(I)*D(I)
‘ c
C LOOP OVER THE NON-ZEROES IN A.
c
20 IF (NZ2.LE.0) GO TO 100
DO 90 K=1,NZ
I=INI(K)
J=INJ(K)
Z(1)=Z(I)+A(K)*B(J)
25 90 Z(J)=Z(J)+A(K)*B(I)
100 RETURN
END

PROGRAM PROG2(INPUT,OUTPUT,DATA,TAPE4=INPUT, TAPE6=DATA,
*TAPES5=0UTPUT)

PROGRAM TO CALCULATE THE EIGENVALUES OF OUR
SYMMETRICALLY PRECONDITIONED COEFFICENT MATRIX
USING THE HARWELL EAl4A LANCZ0S ALGORITHM.

SUBROUTINE GENA AND FACTOR

10 SEE PROG1 FOR DESCRIPTION

SUBROUTINE GETEIG

SUBROUTINE WHICH CALLS SUBROUTINE EAl4A TO CALCULATE
THE DESIRED EIGENVALUES.
MITE - MAXIMUM NUMBER OF ITERATIONS TO BE ATTEMPTED
ACC - DESTRED ACCURACY OF RESULTING EIGENVALUES
EL,ER - SEARCH INTERVAL

15

20 SEE INDIVIDUAL SUBROUTINES FOR MORE DETAILS.

AOOOOO0O00O000O0O0N00O0O0000

REAL A(650),B(64),W(64,3)
INTEGER INI(200),INJ(650),IK(64,4),IW(64,4),0PTION(6)

25 COMMON/MA311/DD,LP,MP
COMMON/MA31J /LROW,LCOL,NCP,ND, IPD
COMMON/MA3 1K/NURL, NUCL,NUAL
COMMON /MCOMM3 /OPTION
COMMON/MA3 IN/MITE,ACC,EL,ER

30 COMMON /MA31L/EPSTOL,U
COMMON /MA3 IM/NT,NJ, NVERSN,NTYPE
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c
:-i EXTERNAL FILL,EUSE
; c
b 35 DATA DD,LP,MP/1.0,6,5/
: DATA EPSTOL,U/2.0E-6,1.0E2/
DATA IAI,IAJ,NN/200,650,64/
DATA MITE,ACC,EL,ER/600,1.0E-4,1.0,0.0/
DATA NI, NJ/8,8/
40 ¢
ND=NN
c
C GET PARAMETERS DETAILING TYPE OF
C PRECONDITIONING METHOD TO USE.
45 €
; READ(4,*) NTYPE,NVERSN
e READ(4,*) (OPTION(I),I1=1,6)
READ(4,%) C
C
50 CALL GENA(NN,NZ,A,INI,INJ,IAI,IAJ,W,B,IK,IW)
: ¢
| IF (OPTION(6).EQ.1) GO TO 5
' C
| C PERFORM THE DESIRED FACTORIZATION
55 C
CALL FACTOR(NN,NZ,A,INI,INJ,IAI,IAJ,IK,IW,W,C,FILL,EUSE)
GO TO 15
5 CONTINUE
C
60 C NO PRECONDITIONING REQUESTED
C GENERATE IDENTITY MATRIX
c
LROW=0
3 DO 10 I=1,NN
e 65 IK(I,1)=0
P IK(I,2)=I
i W(I,2)=1.0
5 10  CONTINUE
3 15 CONTINUE
2 70 C
" q C CALCULATE THE EIGENVALUES OF THE PRECONDITIONED MATRIX
" c
-z CALL GETEIG(NN,NZ,A,INI,INJ,IAI,IAJ,W,IK,B)
c
- 75 END
1
i
e :
S e T R Ay
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SUBROUTINE GETEIG(NN,NZ,A,INI,INJ,IAI,IAJ,W,IK)

SUBROUTINE TO CALCULATE ALL THE EIGENVALUES OF

OUR SYMMETRICALLY PRECONDITIONED INPUT MATRIX

USING THE HARWELL EAl4A LANCZOS ALGORITHM.

SEE SUBROUTINE SOLVE FOR DESCRIPTION OF INPUT PARAMETERS.

REAL A(IAJ),W(NN,3)

REAL EIG(1024),U(1024),V(1024),T1(1024),T2(1024)
REAL X(3000),DEL(3000),ALFA(5000),BETA(5000)
INTEGER INI(IAI),INJ(IAJ),IK(NN,4)

INTEGER NU(3000)

COMMON/EA14BD/PRVT(4),IPRVT(6)
COMMON /MA311/DD,LP,MP
COMMON/MA31J/LROW,LCOL,NCP,ND, IPD
COMMON/MA3 IN/MITE,ACC,EL,ER

DATA LEIG,LX,LALFA/1024, 3000, 5000/

NZ1=NZ+1
TAJ1=IAJ-NZ
IFLAG=-]

A MAXIMUM OF MITE ITERATIONS ARE ATTEMPTED TO
ACQUIRE ALL EIGENVALUES IN THE INTERVAL EL TO ER
TO AN ACCURACY OF ACC.

DO 30 ITER=1,MITE

CALL EA14AD(NN,EL,ER,ACC,LEIG,LX,LALFA,LP,IFLAG,
*y,V,EIG,NEIG,X,DEL,NU,ALFA,BETA)

IF (IFLAG.EQ.0) GO TO 200
IF (IFLAG.GT.1l) GO TO 100

CALCULATES VECTOR U = VECTOR U + MATRIX A’ TIMES VECTOR V,
WHERE MATRIX A’ IS THE RESULT OF SYMMETRICALLY
PRECONDITIONING MATRIX A BY MATRIX C.

CALL MA31G2(NN,A(NZ1),INJ(NZ1),IAJ1,W(1,2),IK,V,T1)
CALL MA31H(A,W,INI,INJ,NZ,NN,T1,T2)
CALL MA31GI1(NN,A(NZ1),INJ(NZ1),IAJL,W(1,2),IK,T2)

DO 20 I=1,NN
U(I1)=U(1) + T2(I)
20  CONTINUE
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30 CONTINUE
50 GO TO 180
c
C EAI4AD IS SIGNALING FAILURE
c
100 WRITE(LP,110) IFLAG
55 WRITE(MP,110) IFLAG
110 FORMAT(26HOEAl4AD HAS FAILED. IFLAG=,12)
GO TO 290
c

C EAI4A COULDN’T FINISH IN THE REQUESTED
60 C NUMBER OF ITERATIONS.
C
180 WRITE(LP,185) MITE
WRITE(MP,185) MITE
185 FORMAT(39HO--WARNING ALL EIGENVALUES NOT FOUND IN,

65 *T3,2X, 10HITERATIONS)
ITER=MITE
C
C OUTPUT DATA ON THE CALCULATED EIGENVALUES
c

70 200 CONTINUE
WRITE(LP,205) PRVT(1)
205 FORMAT(19HOSPECTRAL RADIUS = ,El4.7)
WRITE(LP,215)
215 FORMAT(30HODATA ON RESULTING EIENVALUES)
75 WRITE(LP,220) ITER,ACC
220 FORMAT(8H ITER = ,I3,2X,6HACC = ,E13.5)
WRITE(LP,230) NEIG
230 FORMAT(28H NUM DISTINCT EIGENVALUES = ,I3)
C
80 DO 235 1=1,NEIG
235 EIG(I)=EIG(I)-1.0
C
WRITE(LP, 240)
240 FORMAT(25HOSTATISTICS ON EIG(I)-1.0)
85 C
CALL DSCRPT(NEIG,1,0,EIG,XMN,STDV, VAR, SKW,XKT,
*0,0,0,5,LP) ]
CALL DSCRP2(NEIG,1,1,0,0,EIG,EIG,XMED,XMIN,XMAX, '
*RNGE, LP)
90 C - -
290 CONTINUE
RETURN
END
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SUBROUTINE MA31G1(N,A,INJ,IAJ,D,IK,B)

SUBROUTINE TO SOLVE A SYSTEM OF EQUATIONS

(L TRANSPOSE) (SQRT D) T = B
BY BACKWARD SUBSTITUTION. RESULT IS RETURNED
IN VECTOR B. BASED ON HARWELL ROUTINE MA31G.
REMINDER, ARRAY A CONTAINS L TRANSPOSE.
SEE MA31G FOR DESCRIPTION OF VARIABLES.

OO0 000n

10 INTEGER INJ(IAJ),IK(N,2)
REAL A(IAJ),D(N),B(N)

KP=1

15 DO 25 IIP=1,N
IC=IK(IIP,2)
KL=KP+IK(IC,1)~1
BIC=B(IC)

IF (KP.GT.KL) GO TO 20

20 DO 15 K=KP,KL
IR=INJ(K)

15  B(IR)=B(IR)-A(K)*BIC
20  KP=KL+l
25 CONTINUE

25 C
DO 30 I=1,N
B(I)=B(I)/SQRT(D(I))

30 CONTINUE

30 RETURN
END

SUBROUTINE MA31G2(N,A,INJ,IAJ,D,IK,B,T)

SUBROUTINE TO SOLVE A SYSTEM OF EQUATIONS
(SQRT D)(L) T = B

BY FORWARD SUBSTITUTION. BASED ON THE HARWELL

ROUTINE MA31G. SEE MA31G FOR DESCRIPTION OF

VARIABLES.

REMINDER, ARRAY A CONTAINS L TRANSPOSE.

w
OO0 O0O00

10 INTEGER INJ(IAJ),IK(N,2)
REAL A(IAJ),D(N),B(N),T(N)
COMMON/MA31J/LROW,LCOL,NCP,ND, IPD




15

20

25

30

10

20
25

30

KL=LROW

DO 10 I=1,N
T(I)=B(I)/SQRT(D(I))

DO 30 IPI=],N
TIP=N+1~IPL
IR=IK(I1IP,2)
BIR=0.0
KP=KL-IK(IR,1)+1
IF (KP.GT.KL) GO TO 25
DO 20 K=KP,KL
IC=INJ(K)
BIR=BIR~A(K)*T(IC)
T(IR)=T(IR)+BIR
KL=KP-1

CONTINUE

RETURN
END

131
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PROGRAM PROGIA(GUTPUT,DATA,TAPE5=0UTPUT,TAPE6=DATA)

DRIVER PROGRAM USED DURING PHASE III.
DESIGNED TO SOLVE THE TEST PROBLEMS USING:
A) POINT RED/BLACK GRID POINT ORDERING SCHEME
(NTYPE=2)
B) INCOMPLETE CHOLESKY FACTORIZATION W/ O DIAGONALS
ADDED AS PERFORMED BY SUBROUTINE ICCGO.
THE FOLLOWING PROGRAM CHANGES ARE REQUIRED BY THE
VARIOUS TEST PROBLEMS:
1) TEST PROBLEM 1 (GENAlL)
NVERSN = 1 NI = 32 NJ = 32
ND = 1024
USE DIMENSIONS
B(1024), W(1024,3), wW1(1024,3), IK(1024,2)
AND IW(1024)
2) TEST PROBLEM 2 (GENA2)
NVERSN = 2 NI = 32 NJ = 31
ND = 992
USE DIMENSIONS
B(992), W(992,3), W1(992,3), IK(992,2)
AND IW(992)
3) TEST PRCBLEM 3 (GENA3)
NVERSN = 3
EVERYTHING ELSE AS PER PROBLEM 2
SEE PROGRAMS PROG1, GENA, ICCGO AND SOLVE FOR MORE
DETAILS.

REAL A(5000),B(1024),W(1024,3),W1(1024,3)
INTEGER INI(2000),INJ(5000),IK(1024,2),IW(1024)

COMMON/MA31J/LROW,LCOL,NCP,ND, IPD
COMMON /MA3 IN/MITS,EPS1
COMMON/MA31L/EPSTOL,U
COMMON/MA311/DD,LP,MP

COMMON/MA3 IM/NT,NJ,NVERSN,NTYPE

DATA U,EPSTOL/1.0E2,2.0E~6/
DATA MITS,EPS1/100,1.0E-6/
DATA IAI,IAJ,ND/2000,5000,1024/
DATA DD,LP,MP/1.0,6,5/

DATA NI,NJ/32,32/

DATA NVERSN,NTYPE/1,2/

CALL GENA(ND,NZ,A,INI,INJ,IAI,IAJ,W,B,IK,IW)
NZ1=NZ+1

CALL ICCGO(ND,NZ,A,INI,INJ,A(NZ1),INJ(NZ1),IK,
*IW,W(1,1),W(1,2))
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TAJ2=NZ+LROW
CALL SOLVE(ND,NZ,A,INI,INJ,NZ,TAJ2,W,IK,B,W)

END

PROGRAM PROG1B(OUTPUT,DATA,TAPES=QUTPUT,TAPE6=DATA)

DRIVER PROGRAM USED DURING PHASE III.
DESIGNED TO SOLVE THE TEST PROBLEMS USING
A) LINE RED/BLACK GRID POINT ORDERING SCHEME
(NTYPE = 1)
B) CHOLESKY FACTORIZATION OF THE BLOCK TRIDIAGONAL
PORTION OF MATRIX A, AS PERFORMED BY SUBROUTINE BDIAG.
SEE PROGIA FOR PROGRAM SET-UP ASSOCIATED WITH EACH OF
THE TEST PROBLEMS.
SEE PROGl, GENA, BDIAG AND SOLVE FOR MORE DETAILS.

REAL A(5000),B(992),W(992,3),W1(992,3)
INTEGER INI(2000),INJ(5000),IK(992,2),IW(992)

COMMON/MA31J/LROW,LCOL,NCP,ND, IPD
COMMON/MA3 IN/MITS,EPS1
COMMON/MA31L/EPSTOL,U
COMMON/MA311/DD,LP,MP

COMMON/MA3 IM/NI,NJ,NVERSN,NTYPE

DATA U,EPSTOL/1.0E2,2,.0E-6/
DATA MITS,EPS1/150,1.0E-6/
DATA IAI,IAJ,ND/2000,5000,992/
DATA DD,LP,MP/1.0,6,5/

DATA NI,NJ/32,31/

DATA NVERSN,NTYPE/2,1/

CALL GENA(ND,NZ,A,INI,INJ,IAI,IAJ,W,B,IK,IW)
NZ1=NZ+1

CALL BDIAG(ND,NZ,A,INI,INJ,A(NZ1),INJ(NZ1),IK,
*IW,W(1,1),W(1,2))

IAJ2=NZ+LROW

CALL SOLVE(ND,NZ,A,INI,INJ,NZ,IAJ2,W,IK,B,Wl)

END
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PROGRAM PROGIC(OUTPUT,DATA,TAPE5=0UTPUT,TAPE6=DATA)

DRIVER PROGRAM USED DURING PHASE III.
DESIGNED TO SOLVE TEH TEST PROBLEMS USING
A) 2 LINE RED/BLACK GRID POINT ORDERING SCHEME
(NTYPE = 3)
B) REDUCED BLOCK INCOMPLETE CHOLESKY FACTORIZATION
WITH O DIAGONALS ADDED AS PERFORMED BY RBICO.
SEE PROGIA FOR PROGRAM SET-UP ASSOCIATED WITH EACH OF
THE TEST PROBLEMS.
SEE PROG1, GENA, RBICO AND SOLVE FOF MORE DETAILS.

10

OOOO0OOO0O 00

REAL A(5000),B(1024),W(1024,3),W1(1024,3)

INTEGER INI(2000),INJ(5000),IK(1024,2),IW(1024)
15 C

COMMON/MA31J/LROW,LCOL,NCP,ND, IPD

COMMON /MA3IN/MITS,EPS1

COMMON/MA31L/EPSTOL,U

COMMON/MA31I/DD,LP,MP
20 COMMON/MA3 IM/NI,NJ,NVERSN,NTYPE

DATA U,EPSTOL/1.0E2,2.0E-6/ :

DATA MITS,EPS1/100,1.0E-6/ i

DATA IAI,IAJ,ND/2000,5000,1024/ ’
25 DATA DD,LP,MP/1.0,6,5/ 3 |

DATA NI,NJ/32,32/

DATA NVERSN,NTYPE/1,3/

CALL GENA(NDNZ,A,INI,INJ,IAI,IAJ,W,B,IK,IW)
30 NZ1=NZ+1
NCP=NJ
CALL RBICO(ND,NZ,A,INI,INJ,A(NZ1),INJ(NZ1),IK,
*IW,W(1,1),w(1,2))
IAJ2=NZ+LROW
35 CALL SOLVE(ND,NZ,A,INI,INJ,NZ,IAJ2,W,IK,B,W1)

END
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PROGRAM PROG1D(OUTPUT,DATA,TAPES=OUTPUT, TAPE6=DATA)

DRIVER PROGRAM USED DURING PHASE III.
DESIGNED TO SOLVE THE TEST PROBLEMS USING
A) NATURAL GRID POINT ORDERING SCHEME (NTYPE = Q)
B) NO PRECONDITIONING
SEE PROGIA FOR PROGRAM SET-UP ASSOCIATED WITH EACH OF
THE TEST PROBLEMS.
SEE PROG!, GENA AND SOLVE FOR MORE DETAILS.

REAL A(5000),B(1024),W(1024,3),W1(1024,3)
INTEGER INI(2000),INJ(5000),IK(1024,2),IW(1024)

COMMON/MA31J/LROW,LCOL,NCP,ND, IPD
COMMON /MA3 LN/MITS,EPS1
COMMON/MA31L/EPSTOL,U
COMMON/MA311/DD,LP,MP

COMMON/MA3 IM/NT,NJ, NVERSN,NTYPE

DATA U,EPSTOL/1.0E2,2.0E-6/
DATA MITS,EPS1/100,1.0E-6/
DATA TAI,IAJ,ND/2000,5000,1024/
DATA DD,LP,MP/1.0,6,5/

DATA NI,NJ/32,32/

DATA NVERSN,NTYPE/1,0/

CALL GENA(ND,NZ,A,INI,INJ,IAI,IAJ,W,B,IK,IW)
LROW=0
DO 10 I=]1,ND
IK(I, 1)-0
IK(1,2)=1
W(I1,2)=1.0
10 CONTINUE

WRITE(LP,15)
15 FORMAT(19H NO PRECONDITIONING)
IAJ2=NZ+LROW
CALL SOLVE(ND,NZ,A,INI,INJ,NZ,IAJ2,W,IK,B,W1)

END
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SUBROUTINE GENA(NN,NZ,A,INI,INJ,IAI,IAJ,D,B,IK,IW)

o e e e ¢ e e Ju e e e e e Je e % e Ko vk o e e e e e e T e e e e g vk de ke ok A e o e ke e e e e e ke

GENA2

Pl

PERFORMS THE DISCRETIZATION OF MODEL PROBLEM 2.
SEE GENAl FOR DESCRIPTION OF VARIABLES.

aOoOOO0O0000

10
e o e de A Je o e Je de e e de de e Jo e de de de de de e de ek dede e de ek k e dekok ek kkdedkk

P dmbdtne L e L
OO

[

REAL A(TAJ),B(NN),D(NN),ATYPE(4)
INTEGER INI(IAI),INJ(IAJ),IK(NN,2),IW(NN)

COMMON/MA31J/LROW,LCOL,NCP,ND, IPD
COMMON/MA311/DD,LP,MP
COMMON/MA3 IM/NT,NJ,NVERSN,NTYPE

il Dl o dags

20 DATA ATYPE/7HNATURAL,7HLINE RB,8HPOINT RB,8H2LINE RB/
‘ WRITE(MP,2)
3 2 FORMAT(11H GENA START)

DO 5 I=1,ND
25 IK(1,1)=0
IK(1,2)=0
W(1)=0
5 CONTINUE

30 CALL TIME(AT)
CALL DATE(AD)
CALL SECOND(TIM1)

NNAT=0
35 NZ=0

DO 100 I=1,NI

DO 90 J=1,NJ

NNAT=NNAT+1
40 N=NORDER(NTYPE, I,J,NNAT)

D(N)=4.0

B(N)-0.0

IF (L.EQ.1) D(N)=D(N)/2.0

IF (J.EQ.NJ) D(N)=D(N)/2.0
45 IF (I1.EQ.NI) D(N)=D(N)/2.0
IF (J.NE.1) GO TO 10
B(N)=1.0
IF ((I.EQ.1).OR.(I.EQ.NI)) B(N)=0.5
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10  CONTINUE

C CALCULATE INNER DIAGONAL

c

c
C
c

s NeNoNel

c
c

OO0

IF (J.EQ.NJ) GO TO 20

NZ=NZ+1

A(NZ)’-I 00

IF ((I.EQ.1).0R.(I.EQ.NI)) A(NZ)=-0.5

NT=NORDER(NTYPE, I,J+1,NNAT+1)

CALL ISTORE(N,NT,INI,INJ,IAI,IK,ND,NZ)
20 CONTINUE

CALCULATE OUTER DIAGONAL

IF (I.EQ.NI) GO TO 90

NZ=NZ+1

A(NZ)=~1.0

IF (J.EQ.NJ) A(NZ)=-0.5

NT=NORDER(NTYPE, I+1,J,NNATNJ)

CALL ISTORE(N,NT,INI,INJ,AI,IK,ND,NZ)
90 CONTINUE
100 CONTINUE

INITIALIZE IW(I) TO POINT JUST BEYOND WHERE THE
LAST COMPONENT OF ROW I WILL BE STORED

KI=1

DO 200 I=1,ND

KI=KI+IK(I,1)
200 IW(I)=KI

REORDER BY ROWS USING IN-PLACE SORT ALGORITHM
CALL MA31E(INI,INJ,NZ,IW,ND,A)
REINITIALIZE IW(I) TO POINT TO THE BEGINNING OF ROW I
KK=1
DO 210 IR=1,ND
IW(IR)=KK
210 KK=KK+IK(IR,1)
DO 220 I=1,NZ
220 INI(I)=IABS(INI(I))

CALL SECOND(TIM2)
TIMD=TIM2-TIMI

WRITE(LP,250) TIMD
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250 FORMAT(13H GENA TIME = ,F6.3,4H SEC)
WRITE(LP,260) NVERSN
: 260 FORMAT(L1H VERSION = ,I2)
! 100 WRITE(LP,265) ATYPE(NTYPE+1)
- 265 FORMAT(14H MATRIX A HAS ,A10,9H ORDERING)
: WRITE(LP,270) AD, AT
- 270 FORMAT(18H DATE GENERATED = ,Al0,Al0)
; WRITE(LP,280) ND,N2
1 105 280 FORMAT(6H ND = ,I4,6H NZ = ,I4)
4 WRITE(MP, 290)
= 290 FORMAT(9H GENA END)
1

RETURN
110 END

SUBROUTINE GENA(NN,NZ,A,INI,INJ,IAI,IAJ,D,B,IK,IW)
c
C***************************************************

PERFORMS THE DISCRETIZATION OF MODEL PROBLEM 3.
SEE GENAl FOR DESCRIPTION OF VARIABLES.

10
e e Je e e Je o e e e 3 e s e e e Je v Je e e e e e Je e %k 3 e v e e e e e e e e e K e e e e e ek ek K

QOO0 00O0

REAL A(IAJ),B(NN),D(NN),ATYPE(4)

INTEGER INI(IAI),INJ(IAJ),IK(NN,2),IW(NN)
15 ¢

COMMON/MA31J/LROW,LCOL,NCP,ND, IPD

COMMON /ADATA/NT,NV,AD, AT

COMMON/MA311/DD,LP,MP

COMMON /MA3 1M/NI,NJ,NVERSN,NTYPE
20 ¢

DATA ATYPE/7HNATURAL,7HLINE RB,8HPOINT RB,8H2LINE RB/

WRITE(MP,2)

2 FORMAT(1 1H GENA START)

25 DO 5 I=1,ND
IK(I,1)=0
IK(1,2)=0
IN(I)=0
5  CONTINUE
30 €
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CALL TIME(AT)
CALL DATE(AD)
CALL SECOND(TIM1)

NNAT=0
NZ=0
H=1.0/31.0
HD2=H/2.0
H2=2.0%H
HSQ=H*H

X=-H
XP1=-HD2
XP1SQ=XP1*XP1

DO 95 I=1,NI

XS1=XP1
XS15Q=XP1SQ
XP1=XS1+H
XP1SQ=XP1*XPl
X=X+l
XSQ=X*X

Y=0.0
YP1=HD2
CYP=EXP(X*YP1)

DO 95 J=1,NJ

Y=Y+
YS1=YP1
YP1=YS1+l
¥SQ=Y*Y

NNAT=NNAT+1
N=NORDER(NTYPE,I,J,NNAT)

AXS=XS1SQHISQ+1.0
AXP=XP 1SQ+YSQ+1 .0
CYS=CYP
CYP=EXP(X*YP1)

CXY=b . O%Y SQ* (XSQFYSQF1. 0)+6. 0*Y
GXY-XSQ*GXY+2.0*Y*(YSQ+1.0)
GXY-l.o-cxx-xsq*(XSQ+x)*Exp(x*Y)
GXY=EXP (XSQ*Y)*GXY

o b
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D(N)=AXS+AXP+CYS+CYP+HSQ
80 B(N)=HSQ*GXY

: IF (I.EQ.1) GO TO 25
IF (I.EQ.NI) GO TO 50

85 IF (J.EQ.1) GO TO 10
IF (J.NE.NJ) GO TO 15

CETY T RTINS s g v T Yy =y fEv
e .- T SORS RN

' D(N)=(D(N)-+Hi2*CYP) /2.0
B(N)=(B(N)+H2*CYP*EXP (XSQ)*(1.0+XSQ))/2.0
90 NZ=NZ+1
A(NZ)=-AXP/2.0
GO TO 20

; 10 B(N)=B(N)+CYS
f 95 15 NzZ=NZ+l
A(NZ)=-CYP
NT=NORDER(NTYPE,I,J+1, NNAT+1)
CALL ISTORE(N,NT,INI,INJ,IAI,IK,ND,NZ)
. NZ=NZ+1
; 100 A(NZ)=~-AXP
' 20  NT=NORDE(NTYPE,I+1,J,NNAT+NJ)
CALL ISTORE(N,NT,INI,INJ,IAI,IK,ND,NZ)
GO TO 95

Ty ey o -y

105 25 D(N)=D(N)/2.0
B(N)=B(N)/2.0
IF (J.NE.1) GO TO 30
B(N)=B(N)+CYS/2.0

{ GO TO 35

g 110 ¢

— -

30 IF (JJLNE.NJ) GO TO 35
T1=H2*CYP/4.0
D(N)=D(N)/2.0+T1
B(N)=B(N)/2.0+T1

115 NZ=NZ2+1

A(NZ)=-AXP/4.0 4

GO TO 40 |

v

35  NZ=NZ+l 1
120 A(NZ)=-CYP/2.0
NT=NORDER(NTYPE,I,J+1,NNAT+1)
- CALL ISTORE(N,NT,INI,INJ,IAI,IK,ND,N2)
NZ=NZ+1

A(NZ)=-AXP/2.0
125 40  NT=NORDER(NTYPE,I+1,J,NNATHNJ)
CALL ISTORE(N,NT,INI,INJ,IAI,IK,ND,NZ)

< RS e
D OV SN Ny
(9]




141

GO TO 95

! 50 IF (J.EQ.NJ) GO TO 55
130 D(N)=D(N)/2.0
B(N)=B(N )+4, O*H*Y*EXP(Y ) *AXP
IF (J.EQ.1) B(N)=B(N)+CYS
B(N)=B(N)/2.0
NZaNZ+1
135 A(NZ)=-CYP/2.0
NT=NORDER(NTYPE,I,J+1,NNAT+1)
: CALL ISTORE(N,NT,INI,INJ,IAI,IK,ND,NZ)
Lo GO TO 95

R

-

- ww

(9]

D(N)=(D(N)-+HI2*CYP) /4.0
B(N)=B(N)/4 . 0O+H*EXP (1.0)*(AXP+CYP)

\n
w

140

-
(@]
\O
wn

CONTINUE

INITIALIZE IW(I) TO POINT JUST BEYOND WHERE THE
LAST COMPONENT OF ROW I WILL BE STORED

145

A0

KI=1
DO 200 I=1,ND
150 KRI=aKI+IK(I,1)
200 IW(I)=KI

|
,F,
E |
|

REORDER BY ROWS USING IN-PLACE SORT ALGORITHM

ana

155 CALL MA31E(INI,INJ,NZ,IW,ND,A)

REINITIALIZE IW(I) TO POINT TO THE BEGINNING OF ROW I

Qoo

KK=1
160 DO 210 IR=1,ND
IW(IR)=KK
210 KK=KK+IK(IR,1)
DO 220 I=1,N2Z
220 INI(I)=IABS(INI(I))
165 C
CALL SECOND(TIM2)
TIMD=TIM2-TIMI

. WRITE(LP,250) TIMD
: 170 250 FORMAT(13H GENA TIME = ,F6.3,4H SEC)
WRITE(LP,260) NVERSN
260 FORMA1 ‘:1H VERSION = ,12)
WRITE(LP,265) ATYPE(NTYPE+1)
265 FORMAT(14H MATRIX A HAS ,Al10,9H ORDERING)
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175 WRITE(LP,270) AD,AT
270 FORMAT(18H DATE GENERATED = ,Al10,AlQ)
WRITE(LP,280) ND,NZ
280 FORMAT(6H ND = ,14,6H NZ = ,I4)
WRITE(MP,290)
180 290 FORMAT(9H GENA END)

RETURN
END

SUBROUTINE ICCGd(NN,NZA,A,INI,INJ,C,INJC,IK,IW,DA,DC)
SUBROUTINE TO CALCULATE THE INCOMPLETE CHOLESY
FACTORIZATION WITH ZERO FILL-IN OF THE INPUT
MATRIX A.

INPUT PARAMETERS

10 NN - ORDER OF MATRIX A
NZA - NMBER OF NON-ZERO ELEMENTS IN THE UPPER
TRIANGULAR PORTION OF MATRIX A
A - ARRAY CONTAINING THE NON-ZERO ELEMENTS IN THE
UPPER TRIANGULAR PORTION OF MATRIX A IN ROW
ORDER
INI/INJ - ARRAYS CONTAINING THE ROW/COLUMN INDICES
OF THE CORRESPONDING ENTRY IN ARRAY A.
(IE. INI(I) AND INJ(I) CONTAIN THE ROW
AND COLUMN INDICE FOR ENTRY A(1))
IK(I,1) - CONTAINS THE NUMBER OF ELEMENTS IN
ARRAY A BELONGING TO ROW I
IW(I) ~ POINTS TO THE START OF ROW I IN ARRAY A
DA - ARRAY CONTAINING THE DIAGONAL ELEMENTS OF
MATRIX A

15

20

25
OUTPUT PARAMETERS

ki,

C - ARRAY CONTAINING THE NON-ZERO ELEMENTS IN THE
UPPER TRIANGULAR PORTION OF THE INCOMPLETE
CHOLESKY FACTORIZATION

INJC - ARRAY CONTAINING THE COLUMN INDEX OF THE

CORRESPONDING ENTRY IN ARRAY C
DC -~ ARRAY CONTAINING THE DIAGONAL ELEMENTS IN
THE INCOMPLETE CHOLESKY FACTORIZATION

30

e iy
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IK(1,1) - NUMBER OF NON-ZERO ELEMENTS IN ROW I
OF THE INCOMPLETE FACTORIZATION

IK(I,2) - USED BY OTHER HARWELL ROUTINES TO
IDENTIFY THE ORDER IN WHICH THE ROWS
WERE PROCESSED. IN THIS CASE, ROWS
PROCESSED IN NATURAL ORDER AND
IX(L,2) = I

COMMON BLOCK PARAMETERS

DD,LCOL,NCP,IPD - NOT USED
LP - QUTPUT FILE UNIT NUMBER
MP - MESSAGE FILE UNIT NUMBER
LROW ~ NUMBER OF NON-ZERO ELEMENTS IN THE UPPER
TRIANGULAR PORTION OF THE INCOMPLETE
FACTORIZATION
ND - ORDER OF MATRIX A
EPSTOL ~ MINIMUM SIZE FOR DIAGONAL ELEMENT
U - PARAMETER USED TO DETERMINE WHEN A DIAGONAL
ELEMENT MUST BE MODIFIED TO INSURE POSITIVE
DEFINITENESS

INTEGER IK(NN,2),IW(NN),INI(NZA),INJ(NZA),INJC(NZA)
REAL A(NZA),DA(NN),DC(NN),C(NZA)

COMMON/MA311/DDLP,MP
COMMON/MA31J/LROW,LCOL,NCP,ND,IPD
COMMON/MA31L/EPSTOL,U

CALL SECOND(TIM1)

WRITE(MP,2)

FORMAT(12H START ICCGO)

WRITE(LP,3)

FORMAT(26H PRECONDITIONING = ICCG(0))

1DC=0
CT=EPSTOLAU
IRC=0

DO 5 K=1,ND
DC(K)=DA(K)

DO 100 IROW=1,ND
IRS=IW(IROW)
IRE=IRS+IK(IROW,1)-1
IK(IROW,1)=0
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IK(IROW,2)=IROW
85
DETERMINE IF DIAGONAL ELEMENT MUST BE MODIFIED
TO PRESERVE POSITIVE DEFINITENESS

o000

CO=CT
90 IF (IRS.GT.IRE) GO TO 20
DO 10 K=1RS,IRE
10 CO=AMAX1(CO,ABS(A(K)))
20 IF (DC(IROW).GT.(CO/U)) GO TO 30
IDC=IDC+1
95 DC(IROW)=CO
IF (C0.EQ.CT) DC(IROW)=1.0
30 CONTINUE
c
C PROCESS ELEMENTS IN CURRENT ROW
100 ¢
IF (IRS.GT.IRE) GO TO 100
DO 90 IR=IRS,IRE
I=INI(IR)
J=INJ(IR)
105 IRC=IRC+1
T=A(IR)
C(IRC)=T/DC(IROW)
INJC(IRC)=J
DC(J)=DC(J)-T*C(IRC)
110 IK(IROW,1)=IK(IROW,1)+1
90 CONTINUE

100 CONTINUE

115 LROW=IRC
CALL SECOND(TIM2)
TIMD=TIM2-TIM1

C OUTPUT STATISTICS
120 C
WRITE(LP,110) TIMD
110 FORMAT(14H ICCGO TIME = ,F6.3,5H SECS)
WRITE(LP,120) LROW
120 FORMAT(8H LROW = ,I4)
125 IF (IDC.NE.O0) WRITE(LP,130) IDC
130 FORMAT(4H ** ,14,19H DIAGONALS MODIFIED)
WRITE(MP, 140)
140 FORMAT(10H ICCGO END)

130 RETURN
END

i sperausn . - - } ot e e -
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SUBROUTINE BDIAG(NN,NZA,A,INI,INJ,C,INJC,IK,IW,DA,DC)

SUBROUTINE TO CALCULATE THE CHOLESKY FACTORIZATION
OF THE TRI-DIAGONAL PORTION OF THE INPUT MATRIX A.

SEE SUBROUTINE ICCGO FOR DESCRIPTION OF PARAMETERS.

wn
QOO0

REAL A(NZA),DA(NN),DC(NN),C(NZA)

INTEGER IK(NN,2),IW(NN),INI(NZA),INJ(NZA),INJC(NZA)
10 ¢

COMMON/MA311/DD,LP, MP

COMMON/MA31J /LROW,1.COL,NCP,ND, IPD

COMMON/MA31L/EPSTOL,U

15 CALL SECOND(TIM1)

WRITE(MP,2)
2 FORMAT (12H START BDIAG)
WRITE(LP,3)
20 3 FORMAT(37H PRECONDITIONING = BLOCK TRI-DIAGONAL)

IDC=0
CT=EPSTOL*U
IRC=0
25 ¢
DO 5 K=1,ND
5  DC(K)=DA(K)

DO 100 IROW=1,ND

30 IRS=IW(IROW)
IRE=IRS+IK(IROW,1)-1
IK(IROW,1)=0
IK(IROW,2)=IROW

35 C DETERMINE IF DIAGONAL ELEMENT MUST BE MODIFIED
C TO PRESERVE POSTIVE DEFINITENESS

CO=CT
IF (IRS.GT.IRE) GO TO 20
40 DO 10 K=IRS,IRE
10  CO=AMAX1(CO,ABS(A(K)))
20 IF (DC(IROW).GT.(CO/U)) GO TO 30
IDC=IDC+]
DC(IROW)=CO
45 IF (CO0.EQ.CT) DC(IROW)=1.0
30 CONTINUE
c
C PROCESS ELEMENTS IN THE CURRENT ROW

- e
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IF (IRS.GT.IRE) GO TO 100
DO 90 IR=IRS,IRE
I=INI(IR)

J=INJ(IR)

IF ((J-1).GT.1) GO TO 90
IRC=IRC+1

T=A(IR)
C(IRC)=T/DC(IROW)
INJC(IRC)=J
DC(J)=DC(J)-T*C(IRC)
IK(IROW,1)=IK(IROW,1)+1
CONTINUE

CONTINUE

LROW=IRC
CALL SECOND(TIM2)
TIMD=TIM2-TIMI

C OUTPUT STATISTICS

c

s N NeNzNs Rz N2 K2 X2 R K?)

110

120

130

140

WRITE(LP,110) TIMD

FORMAT(14H BDIAG TIME = ,F6.3,5H SECS)
WRITE(LP,120) LROW

FORMAT(8H LROW = ,14)

IF (IDC.NE.0) WRITE(LP,130) IDC
FORMAT(4H ** ,I4,19H DIAGONALS MODIFIED)
WRITE(MP, 140)

FORMAT(10H BDIAG END)

RETURN
END

SUBROUTINE RBICO(NN,NZA,A,INI,INJ,C,INJC,IK,IW,DA,DC)

SUBROUTINE TO CALCULATE THE INCOMPLETE CHOLESKY
FACTORIZATION OF THE QUINT-DIAGONAL PORTION OF
THE INPUT MATRIX A. 1IT IS ASSUMED THAT THE

2 LINE RED/BLACK ORDERING OF GRID POINTS WAS
USED IN GENERATING MATRIX A.

SEE SUBROUTINE ICCGO FOR DESCRIPTION OF PARAMETERS

NCP - DISTANCE FROM MAIN DIAGONAL TO OUTER MOST

DIAGONAL TO BE INCLUDED IN THE INCOMPLETE
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FACTORIZATION.

REAL A(NZA),DA(NN),DC(NN),C(NZA)

INTEGER IK(NN,2),IW(NN),INI(NZA),INJ(NZA),INJC(NZA)

COMMON/MA311/DD,LP,MP
COMMON/MA31J/LROW, LCOL,NCP,ND, IPD
COMMON/MA31L/EPSTOL,U

CALL SECOND(TIM1)

WRITE(MP,2)

FORMAT(12H START RBICO)

WRITE(LP,3)

FORMAT(26H PRECONDITIONING = RBIC(0))

IDC=0Q
CT=EPSTOL*U
IRC=Q

DO 5 K=1,ND
DC(K)=DA(K)

DO 100 IROW=1,ND
IRS=IW(IROW)
IRE=IRS+IK(IROW,1)~1
IK(IROW,1)=0
IK(IROW,2)=IROW

DETERMINE IF DIAGONAL ELEMENT MUST BE MODIFIED

TO PRESERVE POSITIVE DEFINITENESS

10

20

c

30

CO=CT

IF (IRS.GT.IRE) GO TO 20

DO 10 K=IRS,IRE
CO=AMAX1(CO,ABS(A(K)))

IF (DC(IROW).GT.(CO/U)) GO TO 30
IDC=1DC+1

DC(IROW)=CO

IF (CO.EQ.CT) DC(IROW)=1.0
CONTINUE

C PROCESS ELEMENTS IN CURRENT ROW

c

IF (IRS.GT.IRE) GO TO 100
DO 90 IR=IRS,IRE
I=INI(IR)

J=INJ(IR)
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IF ((J-I).GT.NCP) GO TO 90
IRC=IRC+1
T=A(IR)
C(IRC)=T/DC(IROW)
65 INJC(IRC)=J

DC(J )=DC(J)~-T*C(IRC)
IK(IROW,1)=IK(IROW,1)+1

90 CONTINUE

100 CONTINUE

70 C
LROW=IRC
CALL SECOND(TIM2)
TIMD=TIM2-TIM1
c
75 € OUTPUT STATISTICS
c

WRITE(LP,110) TIMD
110 FORMAT(14H RBICO TIME ~ ,F6.3,5H SECS)
WRITE(LP,120) LROW
80 120 FORMAT(8H LROW = ,I4)
IF (IDC.NE.0) WRITE(LP,130) IDC
130 FORMAT(4H ** ,I4,19H DIAGONALS MODIFIED)
WRITE(MP, 140)
140 FORMAT(10H RBICO END)
85 C
RETURN
END
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PROGRAM PROG2A(OUTPUT,DATA,TAPES=0UTPUT, TAPE6=DATA)

DRIVER PROGRAM USED DURING PHASE III.

DESIGNED TO FIND THE EXTREME EIGENVALUES OF THE
SYMMETRICALLY PRECONDITIONED TEST MATRICES.

IT USES:
A) POINT RED/BLACK GRID POINT ORDERING SCHEME (NTYPE = 2)
B) INCOMPLETE CHOLESKY FACTORIZATION WITH O DIAGONALS

ADDED, AS PERFORMED BY SUBROUTINE ICCGO.

SEE PROGIA FOR PROGRAM SET-UP ASSOCIATED WITH EACH OF

THE TEST PROBLEMS.

SEE PROG2, GENA, ICCGO AND GETEG2 FOR MORE DETAILS.

REAL A(5000),B(1024),W(1024,3),W1(1024,3)
INTEGER INTI(2000),INJ(5000),IK(1024,2),IW(1024)

COMMON/MA31J/LROW,LCOL,NCP,ND, IPD
COMMON/MA3 1N/MITE,ACC,EL,ER
COMMON/MA31L/EPSTOL,U
COMMON/MA311/DD,LP,MP

COMMON/MA3 IM/NT,NJ, NVERSN,NTYPE

DATA U,EPSTOL/1.0E2,2.0E-6/

DATA MITE,ACC,EL,ER/750,1.0E-2,0.0,1.2/
DATA IAI,IAJ,ND/2000,5000,1024/

DATA DD,LP,MP/1.0,6,5/

DATA NI,NJ/32,32/

DATA NVERSN,NTYPE/1,2/

CALL GENA(ND,NZ,A,INI,INJ,IAI,IAJ,W,B,IK,IW)
NZ1=NZ+1

CALL ICCGO(ND,NZ,A,INI,INJ,A(NZ1),INJ(NZ1),IK,IW,
*W(1,1),W(1,2))

TAJ2=NZ+LROW

CALL GETEG2(ND,NZ,A,INI,INJ,NZ,IAJ2,W,IK)

END
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PROGRAM PROG2B(QOUTPUT,DATA,TAPES=OUTPUT,TAPE6=DATA)

DRIVER PROGRAM USED DURING PHASE III.
DESIGNED TO FIND THE EXTREME EIGENVALUES OF THE
SYMMETRICALLY PRECONDTIONED TEST MATRICES.
IT USES:
A) LINE RED/BLACK GRID POINT ORDERING SCHEME (NTYPE = 1)
B) CHOLESKY FACTORIZATION OF THE BLOCK TRI~DIAGONAL PORTION
OF MATRIX A.
SEE PROG1A FOR PROGRAM SET-UP ASSOCIATED WITH EACH OF
THE TEST PROBLEMS.
SEE PROG2, GENA, BDIAG AND GETEG2 FOR MORE DETAILS.

REAL A(5000),B(1024),W(1024,3),W1(1024,3)
INTEGER INI(2000),INJ(5000),IK(1024,2),IW(1024)

COMMON/MA31.J/LROW,LCOL,NCP,ND, IPD
COMMON/MA31N/MITE,ACC,EL,ER
COMMON/MA31L/EPSTOL,U
COMMON/MA311/DD,LP,MP

COMMON /MA3 IM/NTI,NJ,NVERSN,NTYPE

DATA U,EPSTOL/1.0E2,2.0E-6/

DATA MITE,ACC,EL,ER/750,1.0E-2,0.0,1.2/
DATA TAI,IAJ,ND/2000,5000,1024/

DATA DD,LP,MP/1.0,6,5/

DATA NI,NJ/32,32/

DATA NVERSN,NTYPE/1,1/

CALL GENA(ND,NZ,A,INI,INJ,IAI,IAJ,W,B,IK,IW)
NZ1=NZ+1

CALL BDIAG(ND,NZ,A,INI,INJ,A(NZ1),INJ(NZ1),IK,IW,
*W(1,1),W(1,2))

1AJ2=NZ+LROW

CALL GETEG2(ND,NZ,A,INI,INJ,NZ,IAJ2,W,IK)

END

B L

o
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PROGRAM PROG2C (OUTPUT ,DATA,TAPES=OUTPUT,TAPE6=DATA)

DRIVER PROGRAM USED DURING PHASE III.
DESIGNED TO FIND THE EXTREME EIGENVALUES OF THE
SYMMETRICALLY PRECONDITIONED TEST MATRICES.
IT USES:
A) 2 LINE RED/BLACK GRID POINT ORDERING SCHEME (NTYPE = 3)
B) REDUCED BLOCK INCOMPLETE CHOLESKY FACTORIZATION WITH
0 DIAGONALS ADDED AS PERFORMED BY SUBROUTINE RBICO.
SEE PROGIA FOR PROGRAM SET-UP ASSOCIATED WITH EACH OF THE
TEST PROBLEMS.
SEE PROG2, GENA, RBICO AND GETEG2 FOR MORE DETAILS.

REAL A(5000),B(1024),W(1024,3),W1(1024,3)
INTEGER INI(2000),INJ(5000),IK(1024,2),IW(1024)

COMMON/MA31J/LROW,LCOL,NCP,ND, IPD
COMMON /MA3 IN/MITE,ACC,EL,ER
COMMON/MA31L/EPSTOL,U
COMMON/MA311 /DD, LP,MP

COMMON/MA3 IM/NI,NJ, NVERSN,NTYPE

DATA U,EPSTOL/1.0E2,2.0E-6/

DATA MITE,ACC,EL,ER/1500,1.0E-2,1.0,0.0/
DATA IAI,IAJ,ND/2000,5000,1024/

DATA DD,LP,MP/1.0,6,5/

DATA NI,NJ/32,32/

DATA NVERSN,NTYPE/1,3/

CALL GENA(ND,NZ,A,INI,INJ,IAI,IAJ,W,B,IK,IW)
NZ1=NZ+1

NCP=NJ

CALL RBICO(ND,NZ,A,INI,INJ,A(NZ1),INJ(NZ1),IK,IW,
*W(1,1),W(1,2))

TAJ2=NZ+LROW

CALL GETEG2(ND,NZ,A,INI,INJ,NZ,IAJ2,W,IK)

END
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PROGRAM PROG2D(OUTPUT,DATA,TAPE5=0UTPUT, TAPE6=DATA)

DRIVER PROGRAM USED DURING PHASE III.
DESIGNED TO FIND THE ESTREME EIGENVALUES OF THE
SYMMETRICALLY PRECONDITIONED TEST MATRICES.
IT USES:
A) NATURAL GRID POINT ORDERING SCHEME (NTYPE = 0)
B) NO PRECONDITIONING
SEE PROGIA FOR PROGRAM SET-UP ASSOCIATED WITH EACH OF
THE TEST PROBLEMS.
SEE PROG2, GENA AND GETEG2 FOR MORE DETAILS.

10

a0 an

REAL A(5000),B(1024),W(1024,3),W1(1024,3)
INTEGER INI(2000),INJ(5000),1(104,2),IW(1024)
15 ¢
COMMON/MA31J/LROW,LCOL,NCP,ND, IPD
COMMON/MA3 IN/MITE,ACC,EL,ER
COMMON/MA31L/EPSTOL,U
COMMON/MA311/DD,LP,MP
20 COMMON/MA3 IM/NTI,NJ,NVERSN,NTYPE

DATA U,EPSTOL/1.0E2,2.0E-6/
DATA MITE,ACC,EL,ER/750,1.0E-2,0.0,1.2/
DATA TAI,IAJ,ND/2000,5000,1024/
25 DATA DD,LP,MP/1.0,6,5/
DATA NI,NJ/32,32/
DATA NVERSN,NTYPE/1,0/

CALL GENA(ND,NZ,A,INI,INJ,IAI,IAJ,W,B,IK,IW)
30 LROW=(

DO 10 I=1,ND

IK(I,1)=0

IK(1,2)=I

W(I,Z)-I.O
35 10 CONTINUE

WRITE(LP,15)
15 FORMAT(19H NO PRECONDITIONING)
IAJ2=NZ+LROW
40 CALL GETEG2(ND,NZ,A,INI,INJ,NZ,IAJ2,W,IK)

END

Lo ———
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SUBROUTINE GETEG2(NN,NZ,A,INI,INJ,IAI,IAJ,W,IK)

SUBROUTINE TO CALCULATE THE HIGH AND LOW ORDER
EIGENVALUES OF OUR SYMMETRICALLY PRECONDITIONED
INPUT MATRIX USING THE HARWELL EAl4A LANCZOS
ALGORITHM. SEE SOLVE FOR DESCRIPTION OF INPUT
PARAMETERS.

REAL A(IAJ),W(NN,3)

10 REAL EIG(1024),U(1024),V(1024),T1(1024),T2(1024)
REAL X(3000),DEL(3000),ALFA(5000),BETA(5000)
INTEGER INI(IAI),INJ(IAJ),IK(NN,4)

INTEGER NU(3000)

ks amidallas bico e . 4 o ¥
wn
s NeNrEeNes NN

5 15 COMMON/EA14BD/PRVT(4), IPRVT(6)

' COMMON/MA311/DD,LP,MP

g COMMON/MA3 1J/LROW,LCOL,NCP,ND, IPD
- COMMON/MA3 IN/MITE,ACC,EL,ER

AL e
a

; 20 DATA LEIG,LX,LALFA/1024,3000, 5000/

NZ1=NZ+1

| TAJ1=IAJ-NZ
IFLAG=~1

25 CALL SECOND(TIM1)

o o

i i

PASS 1 CALCULATES THE EIGENVALUES IN THE INTERVAL
EL TO ER AS SPECIFIED BY THE CALLING ROUTINE.
PASS 2 CALCULATES THE HIGH ORDER EIGENVALUES USING
ESTIMATED NORM OF THE MATRIX PRODUCED BY ROUTINE

EAl4A TO DEFINE THE INTERVAL TO BE EXAMINED.

30

a0 n

DO 290 IPASS=1,2

(@]

35 WRITE(MP,10) IPASS
10 FORMAT(6H PASS ,Il,6H START)
C
CALL SECOND(TIM2)

c
40 C A MAXIMUM OF MITE ITERATIONS ARE ATTEMPTED TO

C ACQUIRE ALL EIGENVALUES IN THE INTERVAL EL TO ER
C TO AN ACCURACY OF ACC.

c
DO 30 ITER=1,MITE
45 C
CALL EA14AD(NN,EL,ER,ACC,LEIG,LX,LALFA,LP, IFLAG,
. *y,V,E1G,NEIG,X,DEL,NU,ALFA,BETA)
c

e - L) L AN e
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IF (IFLAG.EQ.0) GO TO 200
IF (IFLAG.GT.1) GO TO 100

CALCULATES VECTOR U = VECTOR U + MATRIX A" TIMES VECTOR V,
WHERE MATRIX A’ IS THE RESULT OF SYMMETRICALLY
PRECONDITIONING MATRIX A BY MATRIX C.

CALL MA31G2(NN,A(NZ1),INJ(NZ1),IAJ1,W(1,2),IK,V,Tl)
CALL MA31H(A,W,INI,INJ,NZ,NN,T1,T2)
CALL MA31G1(NN,A(NZ1),INJ(NZ1),IAJ1,W(1,2),IK,T2)

DO 20 I=1,NN
U(I)=U(I) + T2(1)
CONTINUE

CONTINUE
GO TO 180

C EAL4AD IS SIGNALING FAILURE

C
100

110

aaaa

180

185

C

WRITE(LP,110) IFLAG

WRITE(MP,110) IFLAG

FORMAT(26HOEA14AD HAS FAILED, IFLAG=,I2)
GO TO 290

EA14AD COULDN’T FINISH IN THE REQUESTED
NUMBER OF ITERATIONS

WRITE(LP,185) MITE
WRITE(MP,185) MITE
FORMAT (39HO--WARNING ALL EIGENVALUES NOT FOND IN,

*T4,2X,10HITERATIONS)
ITER=MITE

C OUTPUT DATA ON THE CALCULATED EIGENVALUES

c
200

202
205
210
215

CONTINUE

CALL SECOND(TIM3)

TRUN=TIM3-TIM2

WRITE(LP,202) IPASS,TRUN

FORMAT(6H PASS ,I1,12H RUN TIME = ,F10.3,5H SECS)
WRITE(LP,205) PRVT(1l)

FORMAT (1 9HOSPECTRAL RADIUS = ,El4.7)
WRITE(LP,210) EL,ER

FORMAT(19H INTERVAL EXAMINED ,E13.5,3H - ,E13.5)
WRITE(LP,215)

FORMAT(30HODATA ON RESULTING EIGENVALUES)
WRITE(LP,220) ITER,ACC

T sy



100

105

110

115

120

220

230
c

235
240

245
c

C PERPARE TO EXAMINE EIGENVALUES AT THE END OF THE SPECTRUM.

c

290

295
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FORMAT(8H ITER = ,13,2X,6HACC = ,E13,5)
WRITE(LP,230) NEIG
FORMAT(28H NUM DISTINCT EIGENVALUES = ,13)

WRITE(LP,235)

FORMAT(2 8HOORDERED LIST OF EIGENVALUES)
WRITE(LP,240) (EIG(I),I=1,NEIG)
FORMAT(1X,10E13.5)

WRITE(MP,245) IPASS

FORMAT(6H PASS ,I1,S5H DONE)

EL=PRVT(1)*0.8
ER=PRVT(1)*1.1

CONTINUE

CALL SECOND(TIMS)

TT=TIM4-TIM1

WRITE(LP,295) TT

FORMAT(18H TOTAL RUN TIME = ,F10.3,5H SECS)

RETURN
END
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